0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何运用波特图来确保电路的稳定性

MEMS 来源:Digi-Key 作者:Digi-Key 2022-04-25 15:54 次阅读

20 世纪 30 年代,Hendrik Wade Bode 将电路的稳定性作为唯一目标,创造了一种直观的增益/相位方法。这就是现在所说的波特图,一种直观的对电路或放大器增益、相位和反馈系统进行频率图形展示的方法。

鉴于其有用性和重要性,让我们花些时间来了解一下波特稳定性分析技术,看看以分贝 (dB) 和相位响应(度)为单位的开环放大器和电路反馈系数的量级。这篇博客将探讨上述概念并给出建议,并在你的主要目标是频率稳定性时,应如何避免设计出一个“颤抖”电路。

为了练习这种技术,你可以从在线 Digi-Key 创新手册的资源中下载一个可打印的波特图版本。

单极点波特图

单极点电路的配置允许直流 VIN 信号直接进入 VOUT,而在较高的输入频率下,VOUT 等于零分贝 (dB)。波特图的构造很简单。Y 轴的单位是频率的对数,X 轴是线性单位增益分贝或相位度数。在设计波特图时,已经有相当多的公式可以应用,但我们要直接体验这个快速解决方法。

波特图之所以简单性,是因为画图时只需要一个直尺工具并知道一些规则即可(图 1)。

poYBAGJmXa2AbIfKAAFE-3G2JKo112.png

图 1:展示幅度和相移的单极点波特图使用了直线来显示电路的频率和相位响应。(图片来源:Bonnie Baker)

图 1 中的两幅图表示了单极点电阻/电容对的频率相对增益和相位的关系。上下两幅图的 X 轴频率范围为 1 赫兹 (Hz) 到 10 兆赫 (MHz)。上图 Y 轴范围从 0 分贝 (dB) 到 100 dB,其中 1 Hz 的信号值等于 100 dB。这个值与 100,000 x VIN 的增益因子一致。蓝色曲线是在 fP 或 100 Hz 时的单极点增益响应,其中 R 等于 159 千欧 (kΩ),C 等于 10 纳法拉 (nF)。

当频率增加超过极点频率 (fP) 时,蓝色曲线以 -20dB /十倍频程或 -6dB/八倍频程速率下降。这个衰减率是要记住的第一个波特图的经验法则:电路中的每个极点从极点频率开始都会以 -20dB/十倍频程的速率下降。因此,如果两个极点在相同的频率范围内对 VOUT 进行衰减,则衰减率为-40dB/十倍频程。

图 1 中的下图表示了这个单极点电路的相位。在 1Hz 时,R/C 网络的相位为 0 度 (°)。在 fP 前的一个十倍频程,或者在这个例子中的 10 Hz 情形下,单极点相位开始以 -45°/十倍频程的速度向其 -90° 目标下降。

有几个规则适用于极点的相位响应。极点电路的第二个波特图经验法则是,在 fP 处相位等于 -45°。第三和第四条波特图法则描述了衰减和完成的相位点。单极点相位在极点频率 (fP) 的前一个十倍频程开始下降,并在 fP 的后一个十倍频程最终定在 -90°。

单零点波特图

单零点波德图反映了单极点波德图的相反规则。位置切换,R 和 C 值相同,以阻止直流 VIN 电压,同时允许较高频率通过电容器(图 2)。

pYYBAGJmXbeAd28lAAE9U7DzfKQ283.png

图 2:展示幅度和相移的单零点波特图。(图片来源:Bonnie Baker)

当频率增加超过 fZ 时,蓝色曲线以 +20dB/十倍频程的速率上升。图 2 中的下图展示了这个单零点电路的相位。在 fZ 前的一个十倍频程,单零点相位开始以 +45°/十倍频程的速度向其 +90° 的目标上升。在 fZ 处,零点电路相位等于 +45°。

总结一下图 1 中的值,极点位置是 fP,fP 之后的增益幅度有一个 -20dB/十倍频程的斜率。相位通过 fP 时有 -45°/十倍频程的斜率,相位在 0.1x fP 时开始衰减,在 10x fP 时稳定到 -90°。总结一下图 2 中的值,零点位置是 fZ,fZ 之后的增益幅度有一个 +20dB/十倍频程的斜率。相位通过 fZ 时有 +45°/十倍频程的斜率,相位在 0.1x fZ 时开始衰减,在 10x fZ 时稳定到 +90°。

放大器开环波特图

标准运算放大器产品的频率操作从亚赫兹到零 dB 截止频率的传递函数中会有多个极点和零点。放大器波特图没有任何神奇之处,只需遵循规则即可(图 3)。

pYYBAGJmXcKAZIj6AAH8QtQ0gEQ101.png

图3:展示幅度和相移的运算放大器可能波特图。(图片来源:Bonnie Baker)

图 3 展示了一个运算放大器实例,其传递函数中有两个极点(f1 和 f2)。有了这两个极点,增益每次下降 -20dB/十倍频程,相位总共下降 -180 度。

到目前为止,我们对如何构建波特图有了一个良好的开始,但具体落实到实际项目上来时,其中还有一个反馈系统在其中。

闭环放大器系统的稳定性

如果你花点时间看一下运放电路,就会发现反馈网络的存在。经典的运算放大器反馈网络有一个增益正向元件 (AOL(jω)) 和反馈元件 (β(jω))。

poYBAGJmXcyAJcOfAABtHB064hA230.png

图 4:经典运放反馈网络有一个前馈元件 (AOL(jω)) 和反馈元件 (β(jω))。(图片来源:Bonnie Baker)

在图 4 中,运算放大器 (AOL) 的开环增益相对较大,而反馈系数相对较小。这种配置将输出送回反相端,创造了一个负反馈条件,这种反馈使输出受到控制。我们将使用 β 的倒数或 1/β 来确定运放电路的稳定性。

计算 1/β 的最简单方法是在运放的非反相输入端放置一个称为 VSTABILITY 的电压源。这个计算策略将提供一个很好的路径来确定电路的稳定性(图 5)。

poYBAGJmXdeAIZdmAAEGGR8PXwQ128.png

图 5:非反相运放电路 a.) 和反相运放电路 b.) 在其非反相输入端都有一个虚构的 VSTABILITY 电压源,以便准确计算电路的 1/β 系数,或噪声增益。(图片来源:Bonnie Baker)

如果你检查图 5 中的电路,就会发现从非反相端到输出端的反馈电路是一样的。VSTABILITY 电压源的位置能够准确计算出电路的 1/β 系数,或噪声增益。

1/β 稳定性分析使用了 VSTABILTIY。如果你假设运放的开环增益是无限的,那么两个电路的传递函数就等于:

pYYBAGJmXeSAHRymAAAlpJbR6ws483.png

等式 1

pYYBAGJmXfKADFTSAAAhKfwpy0g383.png

等式 2

pYYBAGJmXfyARHY0AABQ50oNojQ402.png

等式 3

当等式 3 的频率成分 jω 等于零时:

poYBAGJmXgWAKVGvAAAel375wi4946.png

等式 4

当等式 3 中 jω 接近无穷大时:

poYBAGJmXg-AD7eQAAAe-9WfWX4203.png

等式 5

1/β 的零点 (fZ) 和极点 (fP) 的频率为:

pYYBAGJmXhuAdm2vAAAgmmicvO0265.png

等式 6

poYBAGJmXiaAZKDOAAAdJ_wHBRg037.png

等式 7

符合上述规则的 1/β 的稳定性分析曲线的波特图如图 6 所示。

pYYBAGJmXjGAKbl0AAJMP8OTib0684.png

图6:图 5 a.) 和 b.) 的 1/β 频率响应是相同的。零点出现在较低的频率,而极点则出现在较高的频率。(图片来源:Bonnie Baker)

图 6 描述了运算放大器电路的 1/β 的频率和相位响应或噪声增益。该图以图形形式总结了等式 4 至 7。等式 4 和 5 定义了直流增益和 Y 增益。等式 6 和 7 确定了电路的零点和极点。图 3 和图 6 中的信息通过定义系统的传递函数以及极点和零点的位置,为确立运放电路的稳定性提供了第一步。最后一步是将图 3 和图 6 叠加成一个图形。

系统稳定性的确定

开环和闭环增益的交叉点或截止率定义了电路的相移。一般来说,截止率小于或等于 30 dB 表明电路是稳定的。截止率大于 30dB,就会走向不稳定的电路状态(图 7)。

poYBAGJmXjuAWA5OAAKRVmKCnHA635.png

图 7:叠加的运算放大器的 AOL 增益和相位响应与 1/β 增益和相位响应。(图片来源:Bonnie Baker)

在图 7 中,AOL 和 1/β 增益曲线之间的截止率等于 40 dB。40dB 的截止率表明相移大于 135°,这显示了一个不稳定的电路。在这种配置下,180° 的截止率会产生一个振荡的电路。

对上述问题有许多解决办法。可以通过移动极点和零点频率来改变电阻或电容值。另一个办法是选择不同的运算放大器(图 8)。

poYBAGJmXkWANxxLAAKuNG2Fx8s089.png

图 8:在不改变零点和极点频率的情况下,使用带宽高于图 7 中运算放大器的运算放大器。(图片来源:Bonnie Baker)

在图 8 中,在不改变 1/β 网络的情况下,运算放大器的带宽大约高出两个十倍频程。绿色的虚线反映了实际的计算结果,并提供了一个更真实的波特图。放大器带宽的增加使截止率从 40 dB 变为 20 dB。由此产生的相移现在是 ~105°,表示电路是稳定的。

图 8 中的绿色虚线超越了用尺子和铅笔绘制的波德图,包括了真实世界的响应。

测量电路的增益和相位

测量一个放大器电路的增益和相位需要一个提供输入信号的函数发生器,以及一个网络分析仪(图 9)。代表性的是 Tabor Electronics LS3081B 3 GHz 射频模拟扫频函数发生器。

poYBAGJmXk-ABjtQAADtpGo3--s033.png

图 9:图 5 b.) 的反相放大器电路的增益和相位测量配置。(图片来源:Bonnie Baker)

在图 9 中,函数发生器的输入信号的应用发生在端口 1 到 VSTABILITY 节点。信号通过放大器电路传播到电路的输出端 (VOUT),网络分析仪在端口 2 捕捉到信号并与函数发生器的端口 1 信号进行比较。

结语

当进行稳定型运算放大器电路设计时,波特图是一个非常有用的工具,一定加到你的装备库中。当开始研究多极点和多零点电路时,你就会发现波特图的巨大潜力。通过放大器开环增益和反馈网络之间的截止率,就可以迅速确定电路的稳定性。

虽然这篇博客可以帮助你掌握波特图的使用,展示了在图形纸上简单地使用直尺来估计一阶极点和零点电路的增益与相位的关系,但最好的学习方法还是实践。此外,您可以从在线 Digi-Key 创新手册的资源中下载波特图的可打印版本开始。

来源:Digi-Key

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 放大器
    +关注

    关注

    145

    文章

    14057

    浏览量

    215818
  • 函数
    +关注

    关注

    3

    文章

    4365

    浏览量

    63927
  • 单极点
    +关注

    关注

    1

    文章

    3

    浏览量

    7309

原文标题:基于自主构建的心脏芯片用于中药成分毒性检测

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
    相关推荐
    热点推荐

    HX1117A的性能测试:确保电子设备的稳定性和可靠性

    阅读关于HX1117A稳压器芯片性能测试的详细报告,了解其如何确保电子设备的稳定性和可靠性。
    的头像 发表于 02-26 17:09 299次阅读
    HX1117A的性能测试:<b class='flag-5'>确保</b>电子设备的<b class='flag-5'>稳定性</b>和可靠性

    旋转测径仪的底座如何保证稳定性

    关键字:旋转测径仪,底座材质,测径仪底座结构,旋转测径仪稳定性, 旋转测径仪的底座保证稳定性确保测量精度和仪器长期稳定运行的关键。以下是一些常见的保证旋转测径仪底座
    发表于 01-09 14:04

    影响BUCK电路占空比稳定性的因素

    开关周期内导通的时间比例。占空比的稳定性对于电路的性能至关重要,因为它直接影响到输出电压的稳定性和纹波。以下是一些影响BUCK电路占空比稳定性
    的头像 发表于 12-12 17:14 1500次阅读

    电阻器的热稳定性分析

    电阻器的热稳定性是指电阻器在温度变化时,其电阻值保持恒定或变化极小的特性。以下是对电阻器热稳定性的分析: 一、电阻器热稳定性的重要性 电阻器是电子电路中的基本元件,其性能
    的头像 发表于 12-04 14:18 686次阅读

    如何测试晶振的稳定性

    以下是一些常用的方法测试晶振的稳定性
    的头像 发表于 11-29 16:41 760次阅读

    如何测试DDR内存的稳定性

    测试DDR内存的稳定性确保计算机系统稳定运行的重要步骤。以下是一些常用的测试DDR内存稳定性的方法: 一、使用专业测试软件 MemTest86 : 功能:MemTest86是一款优秀
    的头像 发表于 11-29 15:01 2014次阅读

    buck电路稳定性分析方法

    Buck电路稳定性分析方法主要涉及反馈增益、相位裕度、负载扰动以及控制策略等方面。以下是对这些分析方法的介绍: 一、反馈增益分析 反馈增益是Buck电路实现稳定输出的关键参数。当反馈
    的头像 发表于 11-21 10:09 1106次阅读

    COT型纹波电路稳定性分析与设计

    电子发烧友网站提供《COT型纹波电路稳定性分析与设计.pdf》资料免费下载
    发表于 09-18 11:18 2次下载
    COT型纹波<b class='flag-5'>电路</b>的<b class='flag-5'>稳定性</b>分析与设计

    奈奎斯特分析怎么判断稳定性啊?

    我用tian90的交流分析分析电路交流传输特性中的稳定性,用奈奎斯特,为什么扫描类型用线性和对数分别扫描出来的是一摸一样的,对吗?奈奎斯特分析怎么判断
    发表于 09-13 06:59

    在TINA中搭建一个光电转换电路,多级电路稳定性怎么判断?

    对不对?仿真结果如图3所示,不确定这个输出结果对不对?电路稳不稳定3 AOL和Noise_Gain曲线 我就想知道怎么判断这
    发表于 09-04 07:16

    凤凰动力舵轮驱动轮的稳定性如何影响AGV的运行效率和稳定性

    的准确性。一个稳定的舵轮能够确保AGV在复杂的工作环境中精确地按照预定路径行驶,避免偏离或产生误差。这有助于提高AGV的导航精度,减少因定位不准确而导致的重复作业或无效移动,从而提高运行效率。 其次,舵轮的稳定性也影响AGV的响
    的头像 发表于 08-27 13:20 565次阅读
    凤凰动力舵轮驱动轮的<b class='flag-5'>稳定性</b>如何影响AGV的运行效率和<b class='flag-5'>稳定性</b>

    如何确保温度继电器的精度和稳定性

    不变。因此,如何确保温度继电器的精度和稳定性成为了工程师和技术人员需要重点关注的问题。本文将从温度继电器的原理、结构、影响因素、以及提高精度和稳定性的措施等方面进行详细探讨。
    的头像 发表于 06-29 17:09 1369次阅读

    环路增益的稳定性

    ,还可以判定系统稳定程度。使用这一判断依据首先要画奈奎斯特曲线,也就是环路增益在极坐标系下的轨迹。 由一个例子引出判断电路稳定性的奈奎斯特依据可以表述为:当奈奎斯特曲线包围或通过点(
    发表于 06-18 15:00

    影响放大器稳定性的因素

    在电子电路设计中,放大器作为信号放大的关键元件,其稳定性对于整个电路的性能至关重要。稳定性良好的放大器能够确保信号的准确传输和放大,避免产生
    的头像 发表于 05-28 14:43 2420次阅读

    肖特基二极管的电流与电路稳定性,你了解吗?

    过大时,会导致二极管温度升高,影响其性能和稳定性。 三、电路稳定性的影响因素: 电源电压:肖特基二极管的工作稳定性电路供电电压密切相关。在
    发表于 05-16 11:40

    半导体芯片需要做哪些测试

    首先我们需要了解芯片制造环节做⼀款芯片最基本的环节是设计->流片->封装->测试,芯片成本构成⼀般为人力成本20%,流片40%,封装35%,测试5%(对于先进工艺,流片成本可能超过60%)。测试其实是芯片各个环节中最“便宜”的一步,在这个每家公司都喊着“CostDown”的激烈市场中,人力成本逐年攀升,晶圆厂和封装厂都在乙方市场中“叱咤风云”,唯独只有测试显

    汉通达
    7小时前
    201

    解决方案 | 芯佰微赋能示波器:高速ADC、USB控制器和RS232芯片——高性能示波器的秘密武器!

    示波器解决方案总述:示波器是电子技术领域中不可或缺的精密测量仪器,通过直观的波形显示,将电信号随时间的变化转化为可视化图形,使复杂的电子现象变得清晰易懂。无论是在科研探索、工业检测还是通信领域,示波器都发挥着不可替代的作用,帮助工程师和技术人员深入剖析电信号的细节,精准定位问题所在,为创新与发展提供坚实的技术支撑。一、技术瓶颈亟待突破性能指标受限:受模拟前端

    芯佰微电子
    6小时前
    220

    硬件设计基础----运算放大器

    1什么是运算放大器运算放大器(运放)用于调节和放大模拟信号,运放是一个内含多级放大电路的集成器件,如图所示:左图为同相位,Vn端接地或稳定的电平,Vp端电平上升,则输出端Vo电平上升,Vp端电平下降,则输出端Vo电平下降;右图为反相位,Vp端接地或稳定的电平,Vn端电平上升,则输出端Vo电平下降,Vn端电平下降,则输出端Vo电平上升2运算放大器的性质理想运算

    张飞实战电子官方
    21小时前
    247

    ElfBoard技术贴|如何调整eMMC存储分区

    ELF 2开发板基于瑞芯微RK3588高性能处理器设计,拥有四核ARM Cortex-A76与四核ARM Cortex-A55的CPU架构,主频高达2.4GHz,内置6TOPS算力的NPU,这一设计让它能够轻松驾驭多种深度学习框架,高效处理各类复杂的AI任务。

    ElfBoard
    1天前
    502

    米尔基于MYD-YG2LX系统启动时间优化应用笔记

    1.概述MYD-YG2LX采用瑞萨RZ/G2L作为核心处理器,该处理器搭载双核Cortex-A55@1.2GHz+Cortex-M33@200MHz处理器,其内部集成高性能3D加速引擎Mail-G31GPU(500MHz)和视频处理单元(支持H.264硬件编解码),16位的DDR4-1600/DDR3L-1333内存控制器、千兆以太网控制器、USB、CAN、

    米尔电子
    1天前
    269

    运放技术——基本电路分析

    虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称

    张飞实战电子官方
    1天前
    363

    飞凌嵌入式携手中移物联,谱写全国产化方案新生态

    4月22日,飞凌嵌入式“2025嵌入式及边缘AI技术论坛”在深圳成功举办。中移物联网有限公司(以下简称“中移物联”)携OneOS操作系统与飞凌嵌入式共同推出的工业级核心板亮相会议展区,操作系统产品部高级专家严镭受邀作《OneOS工业操作系统——助力国产化智能制造》主题演讲。

    飞凌嵌入式
    2天前
    832

    ATA-2022B高压放大器在螺栓松动检测中的应用

    实验名称:ATA-2022B高压放大器在螺栓松动检测中的应用实验方向:超声检测实验设备:ATA-2022B高压放大器、函数信号发生器,压电陶瓷片,数据采集卡,示波器,PC等实验内容:本研究基于振动声调制的螺栓松动检测方法,其中低频泵浦波采用单频信号,而高频探测波采用扫频信号,利用泵浦波和探测波在接触面的振动声调制响应对螺栓的松动程度进行检测。通过螺栓松动检测

    Aigtek安泰电子
    2天前
    1k

    MOS管驱动电路——电机干扰与防护处理

    此电路分主电路(完成功能)和保护功能电路。MOS管驱动相关知识:1、跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压(Vbe类似)高于一定的值,就可以了。MOS管和晶体管向比较c,b,e—–>d(漏),g(栅),s(源)。2、NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以

    张飞实战电子官方
    2天前
    397

    压敏(MOV)在电机上的应用剖析

    一前言有刷直流电机是一种较为常见的直流电机。它的主要特点包括:1.结构相对简单,由定子、转子、电刷和换向器等组成;2.通过电刷与换向器的接触来实现电流的换向,从而使电枢绕组中的电流方向周期性改变,保证电机持续运转;3.具有调速性能较好等优点,可以通过改变电压等方式较为方便地调节转速。有刷直流电机在许多领域都有应用,比如一些电动工具、玩具、小型机械等。但它也存

    深圳市韬略科技有限公司
    05-06 11:34
    273

    硬件原理图学习笔记

    这一个星期认真学习了硬件原理图的知识,做了一些笔记,方便以后查找。硬件原理图分为三类1.管脚类(gpio)和门电路类输入输出引脚,上拉电阻,三极管与门,或门,非门上拉电阻:正向标志作用,给悬空的引脚一个确定的状态三极管:反向三极管(gpio输出高电平,NP两端导通,被控制端导通,电压为0)->NPN正向三极管(gpio输出低电平,PN两端导通,被控制端导通,

    张飞实战电子官方
    04-30 18:40
    467

    TurMass™ vs LoRa:无线通讯模块的革命性突破

    TurMass™凭借其高传输速率、强大并发能力、双向传输、超强抗干扰能力、超远传输距离、全国产技术、灵活组网方案以及便捷开发等八大优势,在无线通讯领域展现出强大的竞争力。

    道生物联
    05-06 10:50
    854

    RZT2H CR52双核BOOT流程和例程代码分析

    RZT2H是多核处理器,启动时,需要一个“主核”先启动,然后主核根据规则,加载和启动其他内核。本文以T2H内部的CR52双核为例,说明T2H多核启动流程。

    RA生态工作室
    04-03 17:14
    2.1k

    干簧继电器在RF信号衰减中的应用与优势

    在电子测试领域,RF(射频)评估是不可或缺的一部分。无论是研发阶段的性能测试,还是生产环节的质量检测,RF测试设备都扮演着关键角色。然而,要实现精准的RF评估,测试设备需要一种特殊的电路——衰减电路。这些电路的作用是调整RF信号的强度,以便测试设备能够准确地评估RF组件和RF电路的各个方面。衰减器的挑战衰减器的核心功能是校准RF信号的强度。为了实现这一点,衰

    斯丹麦德电子
    04-30 11:33
    747

    ElfBoard嵌入式教育科普|ADC接口全面解析

    当代信息技术体系中,嵌入式系统接口作为数据交互的核心基础设施,构成了设备互联的神经中枢。基于标准化通信协议与接口规范的技术架构,实现了异构设备间的高效数据交换与智能化协同作业。本文选取模数转换接口ADC作为技术解析切入点,通过系统阐释其工作机理、性能特征及重要参数,为嵌入式学习者爱好者构建全维度接口技术认知框架。

    ElfBoard
    04-30 09:34
    414