为什么需要密码学?
密码学在我们的日常生活中无处不在。每次您进行在线购买、进行银行交易或 ping 电子邮件客户端时,加密技术都在后台运行。它保护了我们物联网世界中所有传输的信息,以验证人员和设备以及设备到其他设备。如果没有加密引擎和功能,我们的现代世界将陷入停顿,我们所有的重要信息都将暴露给潜在的利用。
经典加密技术
传统上,密码学使用“隐蔽性安全性”作为确保传输信息安全的方法。在这些情况下,所使用的技术对除了少数人之外的所有人都保密,因此被称为“晦涩难懂”。这使得通信安全,但要大规模实施并不是很容易。只有当双方可以在安全的生态系统中进行通信时,经典的加密方法才是安全的。
图 1 显示了一个经典的加密系统。发送方和接收方首先就一组预共享的加密/解密密钥达成一致。然后按顺序使用这些密钥来加密,然后对每条后续消息进行解密。
图1.经典的闭环密码系统使用一次性密码本作为加密技术。
一次性密码本是一种加密技术,需要使用与发送的消息大小相同或更长的一次性预共享密钥。此密钥必须与用于加密的密钥相同。
术语“一次性垫”是一种伪影,将每个键放在使用然后销毁的垫子的页面上。一旦预共享密钥用尽,发送方和接收方需要在安全的位置会面,以安全地交换一组新密钥,然后在下一组消息交换期间将它们存储在安全位置。
显然,过时的经典技术不再可行。今天,一个庞大的电子通信、商业和知识产权系统需要跨越海洋和大陆,否则这些系统将被怀有敌意的人拦截。
物联网时代的密码学
物联网时代要求能够在短时间内执行数十亿笔交易的庞大系统具有出色的安全性。这就是现代密码学的用武之地。它是安全但可访问的通信的重要组成部分,对我们日常生活至关重要。
接下来,我们将学习如何在我们周围的日常工作中实现这一目标。我们依靠众所周知的算法来保护全天候交换的大量信息。这些算法是基于标准的,并在开放环境中进行审查,以便可以快速发现和解决任何漏洞。
图 2 显示了一个简化的现代加密系统。让我们更深入地研究这些系统和算法。
图2.现代对称密钥加密系统提供了更高级别的安全性。
现代加密系统的基本租户是,我们依赖于密钥的保密性,而不是依赖于所用算法的保密性。现代加密系统有四个主要目标:
保密性:信息永远不能透露给无权查看的人。
识别和认证:在交换任何信息之前,请识别并授权发件人和收件人。
正直:信息在存储或传输过程中不得修改。任何修改都必须是可检测的。
不可否认性:不能否认消息的创建/传输。这提供了交易的“数字”合法性和可追溯性。
当前的加密系统以各种形式为预期应用提供上述所有内容或上述内容的组合。让我们进一步探讨这些目标中的每一个,以基本了解如何实现它们。
保密性
机密性要求保护信息免受未经授权的访问。这是通过使用加密算法使用只有发件人和收件人知道的密钥对已发送的消息进行加密来实现的。拦截器可能能够获取加密消息,但无法破译它。
图 3 显示了如何使用加密。在这种情况下,发送方和接收方已经制定了一个共享加密/解密密钥的系统。它们都使用密钥来加密/解密它们之间交换的消息。如果恶意个人拦截了该消息,则不会造成任何伤害,因为该人将没有解密该消息的密钥。
图3.加密可确保信息保密。
识别和认证
此处的目标是首先标识对象或用户,然后在启动通信或其他操作之前对其进行身份验证。发件人对收件人进行身份验证后,可以开始进一步的通信。
在图 4 中,我们展示了身份验证如何在一个方向上工作。在允许客户使用银行网站之前,银行(发件人)使用简单的用户名和密码组合对客户的 PC(收件人)进行身份验证。实际过程要复杂得多,但我们使用这个简单的例子来说明密码学的基本概念。标识和身份验证也可以是一个双向过程,其中发件人和收件人都需要在开始消息交换之前相互标识。
图4.识别和身份验证是密码学的基本概念,在一个方向上工作。
正直
我们如何确保通过通信网络或数据链路发送和接收的消息在传输过程中没有被更改?例如,可能会试图拦截邮件并插入病毒或恶意程序,以在收件人不知情的情况下控制收件人的 PC 或其他设备。为了防止这种情况发生,确保传输的任何消息都不会被修改至关重要。
如图 5 所示,一种方法是使用消息摘要。发件人和收件人使用商定的消息摘要算法来创建和验证消息摘要输出的匹配项。如果邮件被更改,邮件摘要将不匹配,收件人知道发生了篡改或存在传输错误。现代加密应用程序中使用了许多消息摘要算法,包括 SHA-2 和最近的 SHA-3。
图5.使用邮件摘要有助于发件人和收件人保持完整性。
不可否认性
在交换大量消息的通信系统中,需要将传入消息追溯到发件人。这是确保发件人不会拒绝发送邮件所必需的。就像我们签署以完成的笔和纸的法律文件一样,数字签名用于在数字领域实现类似的目标。
图 6 显示了数字签名生成、传输和验证过程的简化视图。首先,发件人获取传出邮件,并通过邮件签名算法生成与邮件和发件人已验证身份相关的数字签名。然后,发件人将数字签名附加到原始邮件并将其发送给收件人。收件人接收传入的组合邮件,并将原始邮件和数字签名分开。然后将两者输入到消息验证算法中。然后,收件人可以使用结果来证明邮件已由发件人签名。
图6.不可否认性过程包括数字签名的生成、传输和验证。
所有这些或大部分功能都可以使用Maxim集成的各种安全认证器产品来实现。您还可以访问Maxim的安全实验室,详细了解我们的解决方案,并使用大量工具和演示来熟悉这些主题。请留意本系列密码学应用笔记中的其他部分。
审核编辑:郭婷
-
Maxim
+关注
关注
8文章
859浏览量
88232 -
密钥
+关注
关注
1文章
143浏览量
20098
发布评论请先 登录
恩智浦:向后量子密码学迁移,我们应该怎么做?

什么是密码学中的DES
密码学在区块链中有着怎样的作用
区块链密码学的基础内容介绍
区块链技术的基石密码学探讨
密码学货币钱包的发展方向分析
基础密码学的概念介绍

智能家居中的清凉“智”选,310V无刷吊扇驱动方案--其利天下
炎炎夏日,如何营造出清凉、舒适且节能的室内环境成为了大众关注的焦点。吊扇作为一种经典的家用电器,以其大风量、长寿命、低能耗等优势,依然是众多家庭的首选。而随着智能控制技术与无刷电机技术的不断进步,吊扇正朝着智能化、高效化、低噪化的方向发展。那么接下来小编将结合目前市面上的指标,详细为大家讲解其利天下有限公司推出的无刷吊扇驱动方案。▲其利天下无刷吊扇驱动方案一

电源入口处防反接电路-汽车电子硬件电路设计
一、为什么要设计防反接电路电源入口处接线及线束制作一般人为操作,有正极和负极接反的可能性,可能会损坏电源和负载电路;汽车电子产品电性能测试标准ISO16750-2的4.7节包含了电压极性反接测试,汽车电子产品须通过该项测试。二、防反接电路设计1.基础版:二极管串联二极管是最简单的防反接电路,因为电源有电源路径(即正极)和返回路径(即负极,GND),那么用二极

半导体芯片需要做哪些测试
首先我们需要了解芯片制造环节做⼀款芯片最基本的环节是设计->流片->封装->测试,芯片成本构成⼀般为人力成本20%,流片40%,封装35%,测试5%(对于先进工艺,流片成本可能超过60%)。测试其实是芯片各个环节中最“便宜”的一步,在这个每家公司都喊着“CostDown”的激烈市场中,人力成本逐年攀升,晶圆厂和封装厂都在乙方市场中“叱咤风云”,唯独只有测试显

解决方案 | 芯佰微赋能示波器:高速ADC、USB控制器和RS232芯片——高性能示波器的秘密武器!
示波器解决方案总述:示波器是电子技术领域中不可或缺的精密测量仪器,通过直观的波形显示,将电信号随时间的变化转化为可视化图形,使复杂的电子现象变得清晰易懂。无论是在科研探索、工业检测还是通信领域,示波器都发挥着不可替代的作用,帮助工程师和技术人员深入剖析电信号的细节,精准定位问题所在,为创新与发展提供坚实的技术支撑。一、技术瓶颈亟待突破性能指标受限:受模拟前端

硬件设计基础----运算放大器
1什么是运算放大器运算放大器(运放)用于调节和放大模拟信号,运放是一个内含多级放大电路的集成器件,如图所示:左图为同相位,Vn端接地或稳定的电平,Vp端电平上升,则输出端Vo电平上升,Vp端电平下降,则输出端Vo电平下降;右图为反相位,Vp端接地或稳定的电平,Vn端电平上升,则输出端Vo电平下降,Vn端电平下降,则输出端Vo电平上升2运算放大器的性质理想运算

ElfBoard技术贴|如何调整eMMC存储分区
ELF 2开发板基于瑞芯微RK3588高性能处理器设计,拥有四核ARM Cortex-A76与四核ARM Cortex-A55的CPU架构,主频高达2.4GHz,内置6TOPS算力的NPU,这一设计让它能够轻松驾驭多种深度学习框架,高效处理各类复杂的AI任务。

米尔基于MYD-YG2LX系统启动时间优化应用笔记
1.概述MYD-YG2LX采用瑞萨RZ/G2L作为核心处理器,该处理器搭载双核Cortex-A55@1.2GHz+Cortex-M33@200MHz处理器,其内部集成高性能3D加速引擎Mail-G31GPU(500MHz)和视频处理单元(支持H.264硬件编解码),16位的DDR4-1600/DDR3L-1333内存控制器、千兆以太网控制器、USB、CAN、

运放技术——基本电路分析
虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称

飞凌嵌入式携手中移物联,谱写全国产化方案新生态
4月22日,飞凌嵌入式“2025嵌入式及边缘AI技术论坛”在深圳成功举办。中移物联网有限公司(以下简称“中移物联”)携OneOS操作系统与飞凌嵌入式共同推出的工业级核心板亮相会议展区,操作系统产品部高级专家严镭受邀作《OneOS工业操作系统——助力国产化智能制造》主题演讲。

ATA-2022B高压放大器在螺栓松动检测中的应用
实验名称:ATA-2022B高压放大器在螺栓松动检测中的应用实验方向:超声检测实验设备:ATA-2022B高压放大器、函数信号发生器,压电陶瓷片,数据采集卡,示波器,PC等实验内容:本研究基于振动声调制的螺栓松动检测方法,其中低频泵浦波采用单频信号,而高频探测波采用扫频信号,利用泵浦波和探测波在接触面的振动声调制响应对螺栓的松动程度进行检测。通过螺栓松动检测

MOS管驱动电路——电机干扰与防护处理
此电路分主电路(完成功能)和保护功能电路。MOS管驱动相关知识:1、跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压(Vbe类似)高于一定的值,就可以了。MOS管和晶体管向比较c,b,e—–>d(漏),g(栅),s(源)。2、NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以

压敏(MOV)在电机上的应用剖析
一前言有刷直流电机是一种较为常见的直流电机。它的主要特点包括:1.结构相对简单,由定子、转子、电刷和换向器等组成;2.通过电刷与换向器的接触来实现电流的换向,从而使电枢绕组中的电流方向周期性改变,保证电机持续运转;3.具有调速性能较好等优点,可以通过改变电压等方式较为方便地调节转速。有刷直流电机在许多领域都有应用,比如一些电动工具、玩具、小型机械等。但它也存

硬件原理图学习笔记
这一个星期认真学习了硬件原理图的知识,做了一些笔记,方便以后查找。硬件原理图分为三类1.管脚类(gpio)和门电路类输入输出引脚,上拉电阻,三极管与门,或门,非门上拉电阻:正向标志作用,给悬空的引脚一个确定的状态三极管:反向三极管(gpio输出高电平,NP两端导通,被控制端导通,电压为0)->NPN正向三极管(gpio输出低电平,PN两端导通,被控制端导通,

TurMass™ vs LoRa:无线通讯模块的革命性突破
TurMass™凭借其高传输速率、强大并发能力、双向传输、超强抗干扰能力、超远传输距离、全国产技术、灵活组网方案以及便捷开发等八大优势,在无线通讯领域展现出强大的竞争力。

RZT2H CR52双核BOOT流程和例程代码分析
RZT2H是多核处理器,启动时,需要一个“主核”先启动,然后主核根据规则,加载和启动其他内核。本文以T2H内部的CR52双核为例,说明T2H多核启动流程。
评论