在操作系统系统中,信号量通常用于控制对共享资源的访问和任务之间进行同步,信号量在操作系统中是很常用的,也是学习freeRTOS操作系统必须要掌握的。
freeRTOS中最常用到的信号量有:二值信号量、计数信号量、互斥信号量。
有关这几个信号量分别如下:
1、二值信号量
1.1、二值信号量
二值信号量是指所创建的信号量只有两个值(0 和 1),通常用于互斥访问或者同步。
二值信号量在某处被占有使用之后,其他地方想要申请这个二值信号量是无法成功申请的,只有当这个被占有的二值信号量被使用完毕并释放之后,才能被再次申请占有使用!
总而言之,二值信号量被使用之后会变为无效状态,需要被重新释放才能进入有效状态。
在freeRTOS中,二值信号量的创建和使用的API管理函数分别如下:
1.2、创建二值信号量
函数原型:SemaphoreHandle_t xSemaphoreCreateBinary(void)
函数描述:
函数** xSemaphoreCreateBinary** 用于创建二值信号量。
返回值: 如果创建成功会返回二值信号量的句柄,创建失败会返回 NULL。
1.3、等待二值信号量
在freeRTOS中,信号量的获取是进行了区分的,在任务或者函数中获取与在中断中是不一样的,freeRTOS中给出了不同API函数。
1)在任务代码中等待信号量
函数原型:
xSemaphoreTake( SemaphoreHandle_t xSemaphore, /* 信号量句柄 */
TickType_t xTicksToWait ); /* 等待信号量可用的最大等待时间 */
函数描述:
函数 xSemaphoreTake 用于在任务代码中获取信号量。
第 1 个参数是信号量句柄。
第 2 个参数是没有信号量可用时,等待信号量可用的最大等待时间,单位系统时钟节拍。
返回值:如果创建成功会获取信号量返回 pdTRUE,否则返回 pdFALSE。
使用这个函数要注意以下问题:
此函数是用于任务代码中调用的,不可以在中断服务程序中调用此函数,中断服务程序使用的是xSemaphoreTakeFromISR。
2)在中断中等待信号量
xSemaphoreTakeFromISR( xSemaphore, pxHigherPriorityTaskWoken )
函数描述:
函数xSemaphoreTakeFromISR用于在中断中获取信号量。
第 1 个参数是要获取的信号量的句柄。这是创建信号量时返回的句柄。
第 2 个参数是如果采用信号量导致任务取消阻止,并且未阻止的任务的优先级高于当前运行的任务,则xSemaphoreTakeFromISR()会将pxHigherPriorityTaskWoken设置为pdTRUE。
如果xSemaphoreTakeFromISR()将此值设置为pdTRUE,则应在退出中断之前请求上下文切换。
返回值:如果创建成功会获取信号量返回 pdTRUE,否则返回 pdFALSE。
1.4、释放二值信号量
1)用于在任务代码中释放二值信号量
函数原型:
xSemaphoreGive( SemaphoreHandle_t xSemaphore ); /* 信号量句柄 */
函数描述:释放信号量
函数 xSemaphoreGive 用于在任务代码中释放信号量。
第 1 个参数是信号量句柄。
返回值,如果信号量释放成功返回 pdTRUE,否则返回 pdFALSE,因为信号量的实现是基于消息队列,返回失败的主要原因是消息队列已经满了。
注意:此函数是用于任务代码中调用的,不可以在中断服务程序中调用此函数。
2)用于在中断中释放二值信号量
函数原型:
xSemaphoreGiveFromISR(SemaphoreHandle_t xSemaphore, signed BaseType_t *pxHigherPriorityTaskWoken)
函数描述:
函数 xSemaphoreGiveFromISR 用于中断服务程序中释放信号量。
第 1 个参数是信号量句柄。
第2个参数用于保存是否有高优先级任务准备就绪。如果函数执行完毕后,此参数的数值是pdTRUE,说明有高优先级任务要执行,否则没有。
返回值:如果信号量释放成功返回 pdTRUE,否则返回 errQUEUE_FULL。
2、计数信号量
计数信号量是一个相当于长度大于1的队列,用于任务之间的同步和共享资源的保护。
计数信号量与二值信号量的不同在于,二值信号量只能被一个地方申请使用,只有在这个申请使用的地方了释放了才能被其他处申请使用。而计数信号量是可以创建一定数量的信号量的,多个地方可以同时申请使用,直到达到最大的计数信号量的阈值。
计数信号量相关的API函数:
2.1、创建计数信号量
SemaphoreHandle_t xSemaphoreCreateCounting( UBaseType_t uxMaxCount, /* 支持的最大计数值 */
UBaseType_t uxInitialCount); /* 初始计数值 */
第 1 个参数:设置此计数信号量支持的 最大计数值 。
第 2 个参数:设置计数信号量的 初始值 。(为0则不起作用)
返回值:如果创建成功会返回消息队列的句柄,创建失败会返回 NULL。
2.2、获取信号量
1)在任务代码中获取信号量
xSemaphoreTake( SemaphoreHandle_t xSemaphore, /* 信号量句柄 */
TickType_t xTicksToWait ); /* 等待信号量可用的最大等待时间 */
函数 xSemaphoreTake 用于在任务代码中获取信号量。
第 1 个参数是信号量句柄。
第 2 个参数是没有信号量可用时,等待信号量可用的最大等待时间,单位系统时钟节拍。
返回值:如果信号量获取成功会返回 pdTRUE,否则返回 pdFALSE。
2)在中断中获取信号量
xSemaphoreTakeFromISR( xSemaphore, pxHigherPriorityTaskWoken )
函数描述:
函数 **xSemaphoreTakeFromISR **用于在中断中获取信号量。
第 1 个参数是要获取的信号量的句柄。这是创建信号量时返回的句柄。
第 2 个参数是如果采用信号量导致任务取消阻止,并且未阻止的任务的优先级高于当前运行的任务,则xSemaphoreTakeFromISR()会将pxHigherPriorityTaskWoken设置为pdTRUE。如果xSemaphoreTakeFromISR()将此值设置为pdTRUE,则应在退出中断之前请求上下文切换。
返回值,如果创建成功会获取信号量返回 pdTRUE,否则返回 pdFALSE。
2.3、释放信号量
1)在任务代码中释放信号量
xSemaphoreGive( SemaphoreHandle_t xSemaphore ); /* 信号量句柄 */
函数 xSemaphoreGive 用于在任务代码中释放信号量。
第 1 个参数是信号量句柄。
返回值,如果信号量释放成功返回 pdTRUE,否则返回 pdFALSE,因为计数信号量的实现是基于消息队列,返回失败的主要原因是消息队列已经满了。
2)在中断中释放信号量
xSemaphoreGiveFromISR(
SemaphoreHandle_t xSemaphore, /* 信号量句柄 */
signed BaseType_t *pxHigherPriorityTaskWoken /* 高优先级任务是否被唤醒的状态保存 */
)
第 1 个参数是信号量句柄。
第2个参数用于保存是否有高优先级任务准备就绪。如果函数执行完毕后,此参数的数值是pdTRUE,说明有高优先级任务要执行,否则没有。
返回值:如果信号量释放成功返回 pdTRUE,否则返回 errQUEUE_FULL。
3、优先级反转 & 互斥信号量
在实时操作系统中,优先级反转的问题是不容忽视的,程序设计的过程中,也是要充分考虑这个问题的。
那优先级反转到底是什么呢?
优先反转是指:假如一个系统中有高(H)、中(M)、低(L)三个优先级的任务,并有一个二值信号量。在某一个时刻二值信号量被低(L)优先级的任务使用了,并在运行过程中,高优先级任务(H)抢占了低优先级(L)的CPU使用权,但是也想要获取二值信号量被低优先(L)的任务占有着,高优先级任务(H)由此被挂起等待了,中优先级任务(M)因为不需要二值信号量,会抢占低优先级(L)任务的执行而得到运行,而高优先级任务(H)依然只能等到低优先级任务(L)释放二值信号量才能得到执行。
由此造成了高优先级任务得不到及时的执行,而低优先级任务却能比高优先级任务更多的得到执行。
优先级互斥的示意图如下:
解决优先级反转的问题最好的办法是使用互斥信号量。
互斥信号量和二值信号量比较相似,不同之处在于互斥信号量具有优先级继承的特性,如果一个互斥信号量正在被一个低优先级的任务使用,而此时这个高优先级的任务也希望获取这个互斥信号量的话就会被阻塞。
使用互斥信号量时,高优先级的任务会把低优先级的任务的优先级先提高到和自己相同的优先级,保证低优先级的任务能够继续运行至结束这样极大减少了因为高优先级获取不到信号量被阻塞过长时间的问题。
互斥信号量的API函数:
1)创建互斥信号量
函数原型:
SemaphoreHandle_t xSemaphoreCreateMutex(void)
函数描述:
函数 xSemaphoreCreateMutex 用于创建互斥信号量。
返回值:如果创建成功会返回互斥信号量的句柄,失败会返回 NULL。
2)获取互斥信号量
函数原型:
xSemaphoreTake( SemaphoreHandle_t xSemaphore, /* 信号量句柄 */
TickType_t xTicksToWait ); /* 等待信号量可用的最大等待时间 */
函数描述:
函数 xSemaphoreTake 用于在任务代码中获取信号量。
第 1 个参数是信号量句柄。
第 2 个参数是没有信号量可用时,等待信号量可用的最大等待时间,单位系统时钟节拍。
返回值:如果创建成功会获取信号量返回 pdTRUE,否则返回 pdFALSE。
(2)释放互斥信号量
函数原型:
xSemaphoreGive( SemaphoreHandle_t xSemaphore ); /* 信号量句柄 */
函数描述:
函数 xSemaphoreGive 用于在任务代码中释放信号量。
第 1 个参数是信号量句柄。
返回值:如果信号量释放成功返回 pdTRUE,否则返回 pdFALSE,因为信号量的实现是基于消息队列,返回失败的主要原因是消息队列已经满了。
-
操作系统
+关注
关注
37文章
7037浏览量
124809 -
FreeRTOS
+关注
关注
12文章
485浏览量
63603 -
信号量
+关注
关注
0文章
53浏览量
8487
发布评论请先 登录
FreeRTOS信号量的使用与实例
转:freeRTOS信号量学习
freertos用信号量同步的时候多任务运行老是崩溃的原因?
FreeRTOS 队列 信号量 互斥量

FreeRTOS系列第20篇---FreeRTOS信号量API函数


瑞萨RA8系列教程 | 基于 RASC 生成 Keil 工程
对于不习惯用 e2 studio 进行开发的同学,可以借助 RASC 生成 Keil 工程,然后在 Keil 环境下愉快的完成开发任务。

共赴之约 | 第二十七届中国北京国际科技产业博览会圆满落幕
作为第二十七届北京科博会的参展方,芯佰微有幸与800余家全球科技同仁共赴「科技引领创享未来」之约!文章来源:北京贸促5月11日下午,第二十七届中国北京国际科技产业博览会圆满落幕。本届北京科博会主题为“科技引领创享未来”,由北京市人民政府主办,北京市贸促会,北京市科委、中关村管委会,北京市经济和信息化局,北京市知识产权局和北辰集团共同承办。5万平方米的展览云集

道生物联与巍泰技术联合发布 RTK 无线定位系统:TurMass™ 技术与厘米级高精度定位的深度融合
道生物联与巍泰技术联合推出全新一代 RTK 无线定位系统——WTS-100(V3.0 RTK)。该系统以巍泰技术自主研发的 RTK(实时动态载波相位差分)高精度定位技术为核心,深度融合道生物联国产新兴窄带高并发 TurMass™ 无线通信技术,为室外大规模定位场景提供厘米级高精度、广覆盖、高并发、低功耗、低成本的一站式解决方案,助力行业智能化升级。

智能家居中的清凉“智”选,310V无刷吊扇驱动方案--其利天下
炎炎夏日,如何营造出清凉、舒适且节能的室内环境成为了大众关注的焦点。吊扇作为一种经典的家用电器,以其大风量、长寿命、低能耗等优势,依然是众多家庭的首选。而随着智能控制技术与无刷电机技术的不断进步,吊扇正朝着智能化、高效化、低噪化的方向发展。那么接下来小编将结合目前市面上的指标,详细为大家讲解其利天下有限公司推出的无刷吊扇驱动方案。▲其利天下无刷吊扇驱动方案一

电源入口处防反接电路-汽车电子硬件电路设计
一、为什么要设计防反接电路电源入口处接线及线束制作一般人为操作,有正极和负极接反的可能性,可能会损坏电源和负载电路;汽车电子产品电性能测试标准ISO16750-2的4.7节包含了电压极性反接测试,汽车电子产品须通过该项测试。二、防反接电路设计1.基础版:二极管串联二极管是最简单的防反接电路,因为电源有电源路径(即正极)和返回路径(即负极,GND),那么用二极

半导体芯片需要做哪些测试
首先我们需要了解芯片制造环节做⼀款芯片最基本的环节是设计->流片->封装->测试,芯片成本构成⼀般为人力成本20%,流片40%,封装35%,测试5%(对于先进工艺,流片成本可能超过60%)。测试其实是芯片各个环节中最“便宜”的一步,在这个每家公司都喊着“CostDown”的激烈市场中,人力成本逐年攀升,晶圆厂和封装厂都在乙方市场中“叱咤风云”,唯独只有测试显

解决方案 | 芯佰微赋能示波器:高速ADC、USB控制器和RS232芯片——高性能示波器的秘密武器!
示波器解决方案总述:示波器是电子技术领域中不可或缺的精密测量仪器,通过直观的波形显示,将电信号随时间的变化转化为可视化图形,使复杂的电子现象变得清晰易懂。无论是在科研探索、工业检测还是通信领域,示波器都发挥着不可替代的作用,帮助工程师和技术人员深入剖析电信号的细节,精准定位问题所在,为创新与发展提供坚实的技术支撑。一、技术瓶颈亟待突破性能指标受限:受模拟前端

硬件设计基础----运算放大器
1什么是运算放大器运算放大器(运放)用于调节和放大模拟信号,运放是一个内含多级放大电路的集成器件,如图所示:左图为同相位,Vn端接地或稳定的电平,Vp端电平上升,则输出端Vo电平上升,Vp端电平下降,则输出端Vo电平下降;右图为反相位,Vp端接地或稳定的电平,Vn端电平上升,则输出端Vo电平下降,Vn端电平下降,则输出端Vo电平上升2运算放大器的性质理想运算

ElfBoard技术贴|如何调整eMMC存储分区
ELF 2开发板基于瑞芯微RK3588高性能处理器设计,拥有四核ARM Cortex-A76与四核ARM Cortex-A55的CPU架构,主频高达2.4GHz,内置6TOPS算力的NPU,这一设计让它能够轻松驾驭多种深度学习框架,高效处理各类复杂的AI任务。

米尔基于MYD-YG2LX系统启动时间优化应用笔记
1.概述MYD-YG2LX采用瑞萨RZ/G2L作为核心处理器,该处理器搭载双核Cortex-A55@1.2GHz+Cortex-M33@200MHz处理器,其内部集成高性能3D加速引擎Mail-G31GPU(500MHz)和视频处理单元(支持H.264硬件编解码),16位的DDR4-1600/DDR3L-1333内存控制器、千兆以太网控制器、USB、CAN、

运放技术——基本电路分析
虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称

飞凌嵌入式携手中移物联,谱写全国产化方案新生态
4月22日,飞凌嵌入式“2025嵌入式及边缘AI技术论坛”在深圳成功举办。中移物联网有限公司(以下简称“中移物联”)携OneOS操作系统与飞凌嵌入式共同推出的工业级核心板亮相会议展区,操作系统产品部高级专家严镭受邀作《OneOS工业操作系统——助力国产化智能制造》主题演讲。

ATA-2022B高压放大器在螺栓松动检测中的应用
实验名称:ATA-2022B高压放大器在螺栓松动检测中的应用实验方向:超声检测实验设备:ATA-2022B高压放大器、函数信号发生器,压电陶瓷片,数据采集卡,示波器,PC等实验内容:本研究基于振动声调制的螺栓松动检测方法,其中低频泵浦波采用单频信号,而高频探测波采用扫频信号,利用泵浦波和探测波在接触面的振动声调制响应对螺栓的松动程度进行检测。通过螺栓松动检测

MOS管驱动电路——电机干扰与防护处理
此电路分主电路(完成功能)和保护功能电路。MOS管驱动相关知识:1、跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压(Vbe类似)高于一定的值,就可以了。MOS管和晶体管向比较c,b,e—–>d(漏),g(栅),s(源)。2、NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以

压敏(MOV)在电机上的应用剖析
一前言有刷直流电机是一种较为常见的直流电机。它的主要特点包括:1.结构相对简单,由定子、转子、电刷和换向器等组成;2.通过电刷与换向器的接触来实现电流的换向,从而使电枢绕组中的电流方向周期性改变,保证电机持续运转;3.具有调速性能较好等优点,可以通过改变电压等方式较为方便地调节转速。有刷直流电机在许多领域都有应用,比如一些电动工具、玩具、小型机械等。但它也存
评论