目录
工业缺陷检测场景简介
在工业生产过程中,由于现有技术、工作条件等因素的不足和局限性,极易影响制成品的质量。其中,表面缺陷是产品质量受到影响的最直观表现。因此,为了保证合格率和可靠的质量,必须进行产品表面缺陷检测。
“缺陷”一般可以理解为与正常样品相比的缺失、缺陷或面积。表面缺陷检测是指检测样品表面的划痕、缺陷、异物遮挡、颜色污染、孔洞等缺陷,从而获得被测样品表面缺陷的类别、轮廓、位置、大小等一系列相关信息。人工缺陷检测曾经是主流方法,但这种方法效率低下;检测结果容易受人为主观因素的影响,不能满足实时检测的要求。它已逐渐被其他方法所取代。
工业缺陷检测场景的特点
自然场景一般是强语义信息,缺陷检测一般为弱语义信息。缺陷检测不需要特别大的感受野,一般为纹路上的缺陷,局部区域就可以判别。工业场景有以下几个特点:
- 业务场景过于分散:缺陷检测场景还是非常分散的,难以归纳。
- 受限、可控:有比较大的人工干预空间。例如可以利用一些光学、机械结构等设计降低场景的复杂,使得我们面临的场景更加纯粹。
- 一般面临的目标比较微弱:这个与目标缺陷的形态、颜色等有关。有时还会有一些例如黑色纹理上的黑色缺陷,强烈吃视角的缺陷等;
- 需求不太明确:很多时候做不到非黑即白的“一刀切。其实仔细思考,并不是客户给不出明确的需求,而是场景和数据本身的固有属性,需求在执行的时候很难做到一致性。
- 精度指标要求比较高:动辄 100% 还是比较夸张的。一般 1 个点的漏捡,2 到 3 个点的误检算是比较理想的结果了。
工业缺陷检测场景的需求
根据工业缺陷检测场景的固有属性。针对该场景,主要有以下几点需求:
- 需求一:能够正确判别出 NG(Not Good) 和 OK,本质是一个分类任务:这个是最基础的任务,可以认为是二分类任务;
- 需求二:定位缺陷的位置和缺陷的类别,本质是一个目标检测的任务: 用矩形框粗略地标记出缺陷的位置,并判别出每个缺陷所属的细分类别,方便归因分析、指标统计、设备升级、维修等;
- 需求三:定位缺陷的精确位置和每一个缺陷的类别,本质是稠密预测,属于图像分割任务:能够精确得到缺陷的轮廓,需要产出缺陷的热力图;一般对应的上层任务有缺陷分级、需求定制或变更。

- 需求四:只有大量的正常样本,设计算法进行缺陷检测,本质是无监督学习算法:只提供一些正常样本,希望模型在仅有的正常样本上训练后,能够检测出实际生产环境中异常缺陷的样本。
工业缺陷检测场景的流程图
工业缺陷检测整个流程如下图所示,一共经过7个阶段,分别是:明确需求阶段、打光阶段、数据阶段、算法设计阶段、部署阶段、运维阶段。

工业缺陷检测常用的深度学习算法
我们能用到的深度学习算法很多,有分类、检测、分割系列,例如分类算法中的细粒度分类,可以更加精准的提取微弱的特征,细粒度算法一般会用到打乱和注意力机制,对纹理上的缺陷识别会更优一点。
另外,应用语义分割任务做缺陷检测,其实缺陷检测并不局限语义分割,它更像提取一张高斯热图,有缺陷的地方概率高,背景区域概率低。因此有一些热图回归的做法也可以应用。
除了监督学习算法,在应对缺少缺陷样本的场景中,我们还可以选择无监督学习方案。
深度学习的快速发展使其在缺陷检测领域得到越来越广泛的应用,具体的缺陷检测方法如图所示。

监督方法
监督方法要求训练集和测试集缺一不可,训练集中的样本必须被标记,其中训练集用于寻找样本的内在规律,然后将规律应用到测试集。
在上述有监督的表面缺陷检测方法中,基于表征学习的方法大致可以分为三类:分类网络、检测网络和分割网络。其中,常用的分类网络是 Resnet、ShuffleNet;通常用作检测网络的是 Faster RCNN、YOLO;常用的分割网络有:FCN、Mask RCNN 等。
在缺陷检测的任务中,分类网络的重点是解决“缺陷是什么”问题,即确定图像的类型(图像是否包含缺陷,缺陷的类型是什么);检测网络的重点是解决“缺陷在哪里”的问题,即获取具体的位置信息和通过确定缺陷的位置来确定缺陷的类别信息;分割网络的焦点是为了解决“有多少缺陷”的问题,即分割从背景中修正缺陷区域,获取位置、类别、属性和缺陷的其他信息。
-
ShuffleNet ShuffleNet 是一种计算效率高的轻量级网络,它采用了逐点组卷积和通道 shuffle 两种新方法来保证计算精度并有效降低计算成本
-
Faster RCNN Faster RCNN 是在 Fast RCNN 的基础上引入了区域提议网络(RPN),将生成区域推荐的步骤放入神经网络中,在端到端的学习模式下实现了几乎无成本的区域推荐算法,极大地提高了目标检测的速度,还提到了滑动窗口方法。
-
全卷积网络 在 FCN 中,一种端到端的图像分割方法,网络中的所有层都是卷积层;网络主要使用三种技术:卷积、上采样和跳过层;可以通过让网络做像素级预测直接得到标签图。核心思想之一是反卷积层,增加了数据规模,从而可以输出准确的结果。
-
Mask RCNN Mask RCNN 是 Faster RCNN 的一种扩展形式,它为两阶段框架网络集成了目标检测和实例分割功能:第一阶段扫描图像并生成候选框(建议框可能包含目标区域),第二阶段分类候选框并生成边界框和掩码。
-
YOLO YOLO (You Only Look Once)是一种单级目标检测器,用于实现两个目标(即速度和准确性)。它将对象检测定义为一个回归问题,图像输入卷积神经网络,并预测每个网格的类概率和边界框。
无监督方法
-
Autoencoder 编码器和解码器是自编码器的两个核心部分。其中,encoder 对应网络模型中的隐藏层,用于学习输入信号的低维特征;解码器对应模型中的输出层,用于尽可能地再现输入信号。因此,使编码器能够学习输入信号良好的低维特征并重构输入信号是自编码器的最终目标。
-
生成对抗网络 生成对抗网络由两个参与者组成:生成器和鉴别器。生成器用于获取样本数据的分布,鉴别器用于估计样本训练数据的概率。该模型的最终目标是学习真实数据的内在规律,预测和估计真实数据的分布或密度,并根据学到的知识生成新的数据,即生成对抗网络制造数据。
-
深度信念网络 深度信念网络由多个RBM(受限玻尔兹曼机)组成,整个网络的训练是通过逐层单独训练 RBM 来完成的。
缺陷检测需要的工具
缺陷检测落地需要非常多的工具支撑:
- 图像采集:相机、运动设备、光学控制;
- 数据托管:服务器、数据库、版本管理、数据积累;
- 数据处理:图像分析、定位、裁剪;
- 数据标注:适配各种任务、半自动标注;
- 数据清洗:半自动、交叉验证、一致性分析;
- 缺陷生成:传统方法、融合、GAN;
- 训练框架:分类、分割、检测、热图回归等;
- 测试框架:多模型测试、指标统计、可视化;
- 部署平台:模型融合、模型加速、平台移植;
- 前端框架:GUI、数据持续收集、用户体验。
审核编辑 :李倩
-
算法
+关注
关注
23文章
4687浏览量
94465 -
工业
+关注
关注
3文章
1983浏览量
47623 -
深度学习
+关注
关注
73文章
5549浏览量
122373
原文标题:工业缺陷检测场景简介
文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
[转]产品表面缺陷检测
机器视觉检测系统在薄膜表面缺陷检测的应用
表面检测市场案例,SMT缺陷检测
工业相机:表面缺陷检测系统的优势
基于深度学习的工业缺陷检测方法
工业CT内部缺陷扫描检测设备

深度学习在工业缺陷检测中的应用

描绘未知:数据缺乏场景的缺陷检测方案

如何应对工业缺陷检测数据短缺问题?


智能家居中的清凉“智”选,310V无刷吊扇驱动方案--其利天下
炎炎夏日,如何营造出清凉、舒适且节能的室内环境成为了大众关注的焦点。吊扇作为一种经典的家用电器,以其大风量、长寿命、低能耗等优势,依然是众多家庭的首选。而随着智能控制技术与无刷电机技术的不断进步,吊扇正朝着智能化、高效化、低噪化的方向发展。那么接下来小编将结合目前市面上的指标,详细为大家讲解其利天下有限公司推出的无刷吊扇驱动方案。▲其利天下无刷吊扇驱动方案一

电源入口处防反接电路-汽车电子硬件电路设计
一、为什么要设计防反接电路电源入口处接线及线束制作一般人为操作,有正极和负极接反的可能性,可能会损坏电源和负载电路;汽车电子产品电性能测试标准ISO16750-2的4.7节包含了电压极性反接测试,汽车电子产品须通过该项测试。二、防反接电路设计1.基础版:二极管串联二极管是最简单的防反接电路,因为电源有电源路径(即正极)和返回路径(即负极,GND),那么用二极

半导体芯片需要做哪些测试
首先我们需要了解芯片制造环节做⼀款芯片最基本的环节是设计->流片->封装->测试,芯片成本构成⼀般为人力成本20%,流片40%,封装35%,测试5%(对于先进工艺,流片成本可能超过60%)。测试其实是芯片各个环节中最“便宜”的一步,在这个每家公司都喊着“CostDown”的激烈市场中,人力成本逐年攀升,晶圆厂和封装厂都在乙方市场中“叱咤风云”,唯独只有测试显

解决方案 | 芯佰微赋能示波器:高速ADC、USB控制器和RS232芯片——高性能示波器的秘密武器!
示波器解决方案总述:示波器是电子技术领域中不可或缺的精密测量仪器,通过直观的波形显示,将电信号随时间的变化转化为可视化图形,使复杂的电子现象变得清晰易懂。无论是在科研探索、工业检测还是通信领域,示波器都发挥着不可替代的作用,帮助工程师和技术人员深入剖析电信号的细节,精准定位问题所在,为创新与发展提供坚实的技术支撑。一、技术瓶颈亟待突破性能指标受限:受模拟前端

硬件设计基础----运算放大器
1什么是运算放大器运算放大器(运放)用于调节和放大模拟信号,运放是一个内含多级放大电路的集成器件,如图所示:左图为同相位,Vn端接地或稳定的电平,Vp端电平上升,则输出端Vo电平上升,Vp端电平下降,则输出端Vo电平下降;右图为反相位,Vp端接地或稳定的电平,Vn端电平上升,则输出端Vo电平下降,Vn端电平下降,则输出端Vo电平上升2运算放大器的性质理想运算

ElfBoard技术贴|如何调整eMMC存储分区
ELF 2开发板基于瑞芯微RK3588高性能处理器设计,拥有四核ARM Cortex-A76与四核ARM Cortex-A55的CPU架构,主频高达2.4GHz,内置6TOPS算力的NPU,这一设计让它能够轻松驾驭多种深度学习框架,高效处理各类复杂的AI任务。

米尔基于MYD-YG2LX系统启动时间优化应用笔记
1.概述MYD-YG2LX采用瑞萨RZ/G2L作为核心处理器,该处理器搭载双核Cortex-A55@1.2GHz+Cortex-M33@200MHz处理器,其内部集成高性能3D加速引擎Mail-G31GPU(500MHz)和视频处理单元(支持H.264硬件编解码),16位的DDR4-1600/DDR3L-1333内存控制器、千兆以太网控制器、USB、CAN、

运放技术——基本电路分析
虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称

飞凌嵌入式携手中移物联,谱写全国产化方案新生态
4月22日,飞凌嵌入式“2025嵌入式及边缘AI技术论坛”在深圳成功举办。中移物联网有限公司(以下简称“中移物联”)携OneOS操作系统与飞凌嵌入式共同推出的工业级核心板亮相会议展区,操作系统产品部高级专家严镭受邀作《OneOS工业操作系统——助力国产化智能制造》主题演讲。

ATA-2022B高压放大器在螺栓松动检测中的应用
实验名称:ATA-2022B高压放大器在螺栓松动检测中的应用实验方向:超声检测实验设备:ATA-2022B高压放大器、函数信号发生器,压电陶瓷片,数据采集卡,示波器,PC等实验内容:本研究基于振动声调制的螺栓松动检测方法,其中低频泵浦波采用单频信号,而高频探测波采用扫频信号,利用泵浦波和探测波在接触面的振动声调制响应对螺栓的松动程度进行检测。通过螺栓松动检测

MOS管驱动电路——电机干扰与防护处理
此电路分主电路(完成功能)和保护功能电路。MOS管驱动相关知识:1、跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压(Vbe类似)高于一定的值,就可以了。MOS管和晶体管向比较c,b,e—–>d(漏),g(栅),s(源)。2、NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以

压敏(MOV)在电机上的应用剖析
一前言有刷直流电机是一种较为常见的直流电机。它的主要特点包括:1.结构相对简单,由定子、转子、电刷和换向器等组成;2.通过电刷与换向器的接触来实现电流的换向,从而使电枢绕组中的电流方向周期性改变,保证电机持续运转;3.具有调速性能较好等优点,可以通过改变电压等方式较为方便地调节转速。有刷直流电机在许多领域都有应用,比如一些电动工具、玩具、小型机械等。但它也存

硬件原理图学习笔记
这一个星期认真学习了硬件原理图的知识,做了一些笔记,方便以后查找。硬件原理图分为三类1.管脚类(gpio)和门电路类输入输出引脚,上拉电阻,三极管与门,或门,非门上拉电阻:正向标志作用,给悬空的引脚一个确定的状态三极管:反向三极管(gpio输出高电平,NP两端导通,被控制端导通,电压为0)->NPN正向三极管(gpio输出低电平,PN两端导通,被控制端导通,

TurMass™ vs LoRa:无线通讯模块的革命性突破
TurMass™凭借其高传输速率、强大并发能力、双向传输、超强抗干扰能力、超远传输距离、全国产技术、灵活组网方案以及便捷开发等八大优势,在无线通讯领域展现出强大的竞争力。

RZT2H CR52双核BOOT流程和例程代码分析
RZT2H是多核处理器,启动时,需要一个“主核”先启动,然后主核根据规则,加载和启动其他内核。本文以T2H内部的CR52双核为例,说明T2H多核启动流程。
评论