影响TD-SCDMA接收器的四个重要问题:相位噪声、噪声系数、I/Q相位不平衡和电源噪声。误差矢量大小用于指定描述这些因素对无线电接收器的影响。给出了估算电源噪声、I/Q平衡和LO相位噪声影响的公式。
介绍
时分、同步码分多址 (TD-SCDMA) 用户设备 (UE) 接收器设计必须平衡许多因素的影响,以满足系统灵敏度规范。使用级联噪声系数技术计算灵敏度是基本的。设计人员在计算接收器灵敏度时还必须考虑压控振荡器 (VCO) 相位噪声、同相/正交 (I/Q) 相位平衡和电源噪声。本文介绍了通过使用误差矢量幅度(EVM)计算来包含这些问题的公式。
与灵敏度规格相关的一些因素
参考灵敏度性能可能是接收器最重要的规格。通常,它是指当系统满足所需的误码率(BER)时天线端口的最小输入功率电平。有七个项目会影响此规范:
接收器的噪声系数
发射器的本底噪声
I/Q增益不平衡
I/Q正交相位不平衡
相位噪声
电源电压噪声
线性相位失真
线性幅度失真
第 1 项和第 2 项描述了添加的白噪声的影响,因此我们可以使用组合噪声图来描述这两个项目。采用TD-SCDMA手机设计,双工是时分双工(TDD)。在TDD操作中,当接收器打开时,发射器应关闭,因此发射器的本底噪声对于TDD模式手机设计来说不是问题。
第3项,I/Q增益不平衡可能对SNR规格没有影响,因此,如果基带电路正确解调信号,则可以容纳I和Q支路之间2或3dB的差异。第6项,电源的噪声,可以通过两种方式影响信号路径:
1) 大多数有源电路将充当幅度调制器。这种作用是由增益随电源线上的噪声而变化引起的。
2) VCO 用作相位调制器。通常这对于手机设计来说不是问题,因为电压噪声通常非常小,例如MAX8878,规格为30Hz至10KHz范围内的100μVrms。
项目7和项目8是线性失真,可由基带处理器进行补偿。由于数字信号处理器(DSP)可以消除这种类型的失真,因此在本文中我们将忽略这两个项目。
下面我们将详细讨论UE接收器设计中最重要的四个问题:相位噪声、噪声系数、I/Q相位不平衡和电源噪声。误差矢量幅度(EVM)将用于量化这些项目。
误差矢量大小
EVM规范通常用于描述传输信号的调制精度。TD-SCDMA和宽带CDMA(WCDMA)标准都使用此规范来指示传输信号的质量。我们知道接收器的BER规范通常被描述为SNR(或Eb/No)的功能。EVM 和 Eb/No 之间有关系吗?3GPP TS25.102给出了EVM定义如下:
误差矢量幅度是(理想)波形与测量波形之间差值的量度。差值称为误差向量。两个波形都通过匹配的根升余弦滤波器,其带宽对应于所考虑的芯片速率和滚降α = 0.22。然后通过选择频率、绝对相位、绝对幅度和芯片时钟时序来进一步修改两个波形,以最小化误差矢量。EVM 结果定义为平均误差矢量功率与以 % 表示的平均参考功率之比的平方根。
从上面的定义中,我们知道Eb/No=1/ (EVM)²。“Eb“是每比特的能量,”No“是每赫兹的SSB噪声功率密度。现在我们将尝试找出EVM和NF,相位噪声,I / Q增益不平衡和I / Q相位不平衡之间的关系。为了简化计算,我们只考虑QPSK调制类型和Es=2Eb对于这种类型的调制,Es是每个传输符号的能量。
噪声系数和 EVM
假设输入信号功率电平为Ps,级联噪声系数为NF,我们有以下公式:
注意:Ts是一个传输符号的周期,T是绝对温度,这里假设为290°K,K是玻尔兹曼常数,Rs是符号速率,Rc是芯片速率,L是扩频因子(SF),SNR是信噪比。
对于TD-SCDMA手机,该标准要求-108dBm参考灵敏度水平,并建议9dB噪声系数。我们假设噪声系数为7dB,允许2dB裕量。扩频因子“L”为16,芯片速率等于1.28Mbps(兆比特每秒)。将这些值插入上述公式可得到以下结果:
相位噪声和 EVM
下图有助于了解相位噪声如何影响信号质量:
请注意,这里 Φ1(t) 和 Φ2(t) 是两个 radices 函数,它们具有以下性质: 现在将 Iout 信号投影到 Φ1(t) 基数: 注意:GΘ(f) 是 DSB 相位噪声功率密度。 然后:通常此规范没有问题。如果我们考虑低于典型的本振(LO)相位噪声规格,则可以计算EVMp规格。
偏移(赫兹) | 1 | 10 | 100 | 1K | 5K | 10K | 20K | 50K | 100K | 500K | 1米 |
分贝/赫兹 | -61 | -63 | -67 | -75 | -78 | -82 | -84 | -89 | -105 | -115 | -125 |
考虑芯片速率等于 1.28Mbps(对于 TD-SCDMA 标准),L 等于 16。获得这些结果: 这是一个非常好的结果。它显示信号没有明显的衰减。根据TD-SCDMA标准,上述LO相位噪声规格对于基准灵敏度规格没有问题。参考灵敏度是在误码率不超过指定值的天线端口处测量的最小接收器输入功率。对于表0中规定的参数,误码率不得超过001.1。
表 1.参考灵敏度测试参数
参数 | 水平 | 单位 |
ΣDPCHo像素 /Ior | 0 | 分贝 |
![]() |
-108 | 分贝/1.28兆赫 |
根据上述标准要求,所有输入功率均为信号,没有其他代码通道。在实际工作环境中,手机将接收许多其他代码通道。在理想情况下,其他代码将没有问题,因为所有信号都是正交的。当考虑相位噪声影响,并用方程7计算EΘ时,发现这是一个严重的问题。下表给出了多路径案例 1 通道中的专用通道 (DCH) 参数:
表 2.多路径案例 1 通道中的 DCH 参数
参数 | 单位 | 测试 1 | 测试 2 | 测试 3 | 测试 4 |
DPCH 数量0 | 8 | 2 | 2 | 0 | |
ΣDPCHo_Ec / Ior | 分贝 | -10 | -10 | -10 | 0 |
Ioc | 分贝/1.28兆赫 | -60 | |||
信息数据速率 | 千兆字节 | 12.2 | 64 | 144 | 384 |
DPCH : 专用物理通道
IOR : 正向通道的CDMA功率谱密度
IOC:干扰噪声和信号的功率谱密度
EC : 单通道的功率谱密度
在测试 1 中,您会发现 Ec/Ior 为 -19dB,因此 EΘ 将增加 19dB,结果如下:
与等式3和4相比,这还不够。良好的设计实践要求3dB裕量来考虑多径衰落。为此,在3KHz、1KHz、10KHz偏移时,相位噪声规格应提高20dB。ΘrmsTs 应小于 1.1°。
电源噪声
电源的噪声会影响LO的相位噪声。下面显示的是估算电源噪声影响的简单公式:
Kp是VCO的推力系数,Psn是电源的噪声功率,fc是PLL滤波器的3dB转折频率。
例如,MAX2392的VCO的Kp规格为2MHz/V,MAX8878的Psn规格在900Hz至10KHz范围内为100μVrms²。假设 fc 的 PLL 带宽等于 5KHz,我们得到以下结果:
RMS相位噪声是可以接受的,主要是由于MAX8878的低噪声。
解调器相位不平衡
由于两条路径中的不匹配,任何I/Q解调器都会产生相位误差。这种相位误差将具有衰减信号功率的作用,从而降低信噪比。I/Q相位不平衡仅影响基准电压源灵敏度,通常非常小。以下是计算相位误差引起的灵敏度下降的公式:
如果Θ=5°,信噪比衰减0.017dB。这个信噪比的降低量可以忽略不计。
审核编辑:郭婷
-
电源
+关注
关注
185文章
18217浏览量
254609 -
接收器
+关注
关注
14文章
2538浏览量
73197 -
无线电
+关注
关注
60文章
2161浏览量
117527
发布评论请先 登录
TD-SCDMA问题 ,kpi指标分析
Maxim TD-SCDMA参考设计
TD-SCDMA基站覆盖和容量能力分析
TD-SCDMA系统原理介绍 pdf
TD-SCDMA的干线增益设计
TD-SCDMA接收机设计方案
TD-SCDMA信令基本流程
TD-SCDMA上行同步码接收
TD-SCDMA网络的整体规划

什么是TD-SCDMA
TD-SCDMA联盟成员

接口核心板必选 | 视美泰AIoT-3568SC 、 AIoT-3576SC:小身材大能量,轻松应对多场景设备扩展需求!
在智能硬件领域,「适配」是绕不开的关键词。无论是小屏设备的”寸土寸金”,还是模具开发的巨额成本,亦或是多产品线兼容的复杂需求,开发者总在寻找一款能「以不变应万变」的核心解决方案。视美泰旗下的AIoT-3568SC与AIoT-3576SC接口核心板系列,可以说是专为高灵活适配场景而生!无需为设备尺寸、模具限制或产品线差异妥协,一块核心板,即可释放无限可能。为什

3核A7+单核M0多核异构,米尔全新低功耗RK3506核心板发布
近日,米尔电子发布MYC-YR3506核心板和开发板,基于国产新一代入门级工业处理器瑞芯微RK3506,这款芯片采用三核Cortex-A7+单核Cortex-M0多核异构设计,不仅拥有丰富的工业接口、低功耗设计,还具备低延时和高实时性的特点。核心板提供RK3506B/RK3506J、商业级/工业级、512MB/256MBLPDDR3L、8GBeMMC/256

搭建树莓派网络监控系统:顶级工具与技术终极指南!
树莓派网络监控系统是一种经济高效且功能多样的解决方案,可用于监控网络性能、流量及整体运行状况。借助树莓派,我们可以搭建一个网络监控系统,实时洞察网络活动,从而帮助识别问题、优化性能并确保网络安全。安装树莓派网络监控系统有诸多益处。树莓派具备以太网接口,还内置了Wi-Fi功能,拥有足够的计算能力和内存,能够在Linux或Windows系统上运行。因此,那些为L

STM32驱动SD NAND(贴片式SD卡)全测试:GSR手环生物数据存储的擦写寿命与速度实测
在智能皮电手环及数据存储技术不断迭代的当下,主控 MCU STM32H750 与存储 SD NAND MKDV4GIL-AST 的强强联合,正引领行业进入全新发展阶段。二者凭借低功耗、高速读写与卓越稳定性的深度融合,以及高容量低成本的突出优势,成为大规模生产场景下极具竞争力的数据存储解决方案。

芯对话 | CBM16AD125Q这款ADC如何让我的性能翻倍?
综述在当今数字化时代,模数转换器(ADC)作为连接模拟世界与数字系统的关键桥梁,其技术发展对众多行业有着深远影响。从通信领域追求更高的数据传输速率与质量,到医疗影像领域渴望更精准的疾病诊断,再到工业控制领域需要适应复杂恶劣环境的稳定信号处理,ADC的性能提升成为推动这些行业进步的重要因素。行业现状分析在通信行业,5G乃至未来6G的发展,对基站信号处理提出了极

史上最全面解析:开关电源各功能电路
01开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。开关电源的电路组成方框图如下:02输入电路的原理及常见电路1AC输入整流滤波电路原理①防雷电路:当有雷击,产生高压经电网导入电源时

有几种电平转换电路,适用于不同的场景
一.起因一般在消费电路的元器件之间,不同的器件IO的电压是不同的,常规的有5V,3.3V,1.8V等。当器件的IO电压一样的时候,比如都是5V,都是3.3V,那么其之间可以直接通讯,比如拉中断,I2Cdata/clk脚双方直接通讯等。当器件的IO电压不一样的时候,就需要进行电平转换,不然无法实现高低电平的变化。二.电平转换电路常见的有几种电平转换电路,适用于

瑞萨RA8系列教程 | 基于 RASC 生成 Keil 工程
对于不习惯用 e2 studio 进行开发的同学,可以借助 RASC 生成 Keil 工程,然后在 Keil 环境下愉快的完成开发任务。

共赴之约 | 第二十七届中国北京国际科技产业博览会圆满落幕
作为第二十七届北京科博会的参展方,芯佰微有幸与800余家全球科技同仁共赴「科技引领创享未来」之约!文章来源:北京贸促5月11日下午,第二十七届中国北京国际科技产业博览会圆满落幕。本届北京科博会主题为“科技引领创享未来”,由北京市人民政府主办,北京市贸促会,北京市科委、中关村管委会,北京市经济和信息化局,北京市知识产权局和北辰集团共同承办。5万平方米的展览云集

道生物联与巍泰技术联合发布 RTK 无线定位系统:TurMass™ 技术与厘米级高精度定位的深度融合
道生物联与巍泰技术联合推出全新一代 RTK 无线定位系统——WTS-100(V3.0 RTK)。该系统以巍泰技术自主研发的 RTK(实时动态载波相位差分)高精度定位技术为核心,深度融合道生物联国产新兴窄带高并发 TurMass™ 无线通信技术,为室外大规模定位场景提供厘米级高精度、广覆盖、高并发、低功耗、低成本的一站式解决方案,助力行业智能化升级。

智能家居中的清凉“智”选,310V无刷吊扇驱动方案--其利天下
炎炎夏日,如何营造出清凉、舒适且节能的室内环境成为了大众关注的焦点。吊扇作为一种经典的家用电器,以其大风量、长寿命、低能耗等优势,依然是众多家庭的首选。而随着智能控制技术与无刷电机技术的不断进步,吊扇正朝着智能化、高效化、低噪化的方向发展。那么接下来小编将结合目前市面上的指标,详细为大家讲解其利天下有限公司推出的无刷吊扇驱动方案。▲其利天下无刷吊扇驱动方案一

电源入口处防反接电路-汽车电子硬件电路设计
一、为什么要设计防反接电路电源入口处接线及线束制作一般人为操作,有正极和负极接反的可能性,可能会损坏电源和负载电路;汽车电子产品电性能测试标准ISO16750-2的4.7节包含了电压极性反接测试,汽车电子产品须通过该项测试。二、防反接电路设计1.基础版:二极管串联二极管是最简单的防反接电路,因为电源有电源路径(即正极)和返回路径(即负极,GND),那么用二极

半导体芯片需要做哪些测试
首先我们需要了解芯片制造环节做⼀款芯片最基本的环节是设计->流片->封装->测试,芯片成本构成⼀般为人力成本20%,流片40%,封装35%,测试5%(对于先进工艺,流片成本可能超过60%)。测试其实是芯片各个环节中最“便宜”的一步,在这个每家公司都喊着“CostDown”的激烈市场中,人力成本逐年攀升,晶圆厂和封装厂都在乙方市场中“叱咤风云”,唯独只有测试显

解决方案 | 芯佰微赋能示波器:高速ADC、USB控制器和RS232芯片——高性能示波器的秘密武器!
示波器解决方案总述:示波器是电子技术领域中不可或缺的精密测量仪器,通过直观的波形显示,将电信号随时间的变化转化为可视化图形,使复杂的电子现象变得清晰易懂。无论是在科研探索、工业检测还是通信领域,示波器都发挥着不可替代的作用,帮助工程师和技术人员深入剖析电信号的细节,精准定位问题所在,为创新与发展提供坚实的技术支撑。一、技术瓶颈亟待突破性能指标受限:受模拟前端

硬件设计基础----运算放大器
1什么是运算放大器运算放大器(运放)用于调节和放大模拟信号,运放是一个内含多级放大电路的集成器件,如图所示:左图为同相位,Vn端接地或稳定的电平,Vp端电平上升,则输出端Vo电平上升,Vp端电平下降,则输出端Vo电平下降;右图为反相位,Vp端接地或稳定的电平,Vn端电平上升,则输出端Vo电平下降,Vn端电平下降,则输出端Vo电平上升2运算放大器的性质理想运算
评论