0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

CTI漏电起痕和高压漏电起痕试验的区别

今森检测设备 2022-12-08 16:51 3030次阅读

漏电起痕试验仪与高压漏电起痕试验仪的区别

CTI漏电起痕和高压漏电起痕试验都是用来检测绝缘材料某一物理性能的测试设备,但两者所检测的物理性能却是不一样的,因此两者所依据的试验标准也是不一样的,接下来为您详述两者之间的主要区别有哪些。

一、定义区别

高压漏电起痕测试模拟在工频(48Hz - 62Hz)下,用液体污染物和斜面试样,通过耐电痕化和蚀损的测量评定在严酷环境条件下使用的电气绝缘材料的耐电痕化和蚀损等级。其电痕化是指固体绝缘表面因局部区域的放电导致持续劣化并形成导电或部分导电通道。

CTI漏电起痕测试也叫耐漏电起痕是模拟家用电器产品在实际使用中不同极性带电部件在绝缘材料表面沉积的导电物质是否引起绝缘材料表面爬电、击穿短路和起火危险而进行的检验,从而测定其相比漏电起痕指数和耐漏电起痕指数。其电痕化是指在电应力和电解杂质的联合作用下,固体绝缘材料表面和/或试样内部导电通道逐形成。

二、主要依据的国标标准区别

高压漏电起痕所依据的国标标准是GB/T6553-2014《严酷环境条件下使用的电气绝缘材料评定耐电痕化和蚀损的试验方法》

CTI漏电起痕所依据的国标标准是GB/T4207-2022《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》

pYYBAGM2PTuAc0qfAAFvB4R8Rq8607.pngCTI漏电起痕测试

三、试验原理区别

CTI漏电起痕试验是在固体绝缘材料表面上,在规定尺寸(2mm×5mm)的铂电极之间,-施加某一电压并定时(30s)定高度(35mm)滴下规定液滴体积的导电液体(0.1%NH 4CL),用以评价固体绝缘材料表面在电场和潮湿或污染介质联合作用下的耐漏电性能,测定其相比电痕化指数(CT1)和耐电痕化指数(PT1)。

高压漏电起痕试验:是在工频(45 Hz~65 Hz)下,用液体污染物和斜面试样,通过耐电痕化和蚀损测量评定在严酷环境条件下使用电气绝缘材料的两种试验方法。在对电工电子产品、家用电器及其材料进行耐电痕化和蚀损的试验,用液体污染物和斜面试样,通过耐电痕化和蚀损的测量评定在严酷环境条件下使用的电气绝缘材料的耐电痕化和蚀损等级。在电器产品受潮湿和杂质环境的影响下,不同极性带电部件之间或带电部件与接地金属之间可能会引起绝缘上的漏电,产生的电弧对电器造成击穿短路或由于放电使材料电蚀损,甚至起燃导致火灾。本试验仪就是模拟上述情况对绝缘材料进行的一种破坏性试验,用以测量和评定在规定电压下,绝缘体在电场和含杂质水的作用时的相对耐漏电起痕性

方法1:恒定电痕化电压法

方法2:逐级电痕化电压法

注:方法1因为不需要连续的观察,是较广泛使用的方法

方法2试验条件设计成使效应加速产生,但并没有模拟在使用中所遇到的全部情况。

四、试验电路区别

CTI漏电起痕试验电路原理是在电极上施加正选波电压,其在100V~600V之间变化,频率为48Hz~62Hz,电压测量装指示一真有效值,最大误差为1.5%。电源功率应不小于0.6kVA,试验电路图如图1所示。可变电阻器应能调节电极之间的短路电流到1.0A±0.1A,且在此电流下,电压表上指示的电压下降应不超过10%,短路电流的测量装置最大误差为±3%。试验装置输入电源电压应足够稳定。当电流有效值为0.5A,其相对公差为±10%,持续2.00s,器相对公差为±10%时,过电流应动作。

QQ图片20200611161219.png

漏电起痕试验电路原理图

高电压起痕试验的电路原理是:由于试验在高压下进行,应使用安全栏安全接触,电路组成如下所述。

电源频率为45Hz~65Hz,输出电压可调到约6kv,并稳定在±5%,对于每个试样的额定电流应不小于0.1A。对方法,优先采用的试验电压为2.5kv、3.5kv和4.5kv。

QQ图片20200610172809.png

高压漏电起痕试验电路原理图

五、试验所用电极材质区别

高压漏电起痕试验所有的电极、固紧装置以及电极相连的装配件,如螺钉应用不锈钢做成(例如:302级)电极装置如下图所示。

QQ图片20200611162520.png

上电极(0.5mm不锈钢)

QQ图片20200611162549.png

下电极(0.5mm不锈钢)

CTI漏电起痕试验所使用的电极应使用最小纯度为99%的铂金电极,两电极间两电极应有一横截面(5±0.1)mm,有30°±2°斜面,斜面的刃近似为平面约0.01mm±0.1mm宽。

QQ图片20200611163835.png

漏电起痕试验电极

六、试验试样尺寸区别

CTI漏电起痕试验的试样可采取任何表面非常平的试样,只要其表面足够,确保试验时无液体流出边缘即可。

注:尽管可采用更小的尺寸,但推荐平面尺寸应不小于30mm*20mm,以减少电解液流出试样边缘损失。

试样厚度应为3mm或更厚,每一材料试样可重叠以获得至少3mm的厚度。

高压漏电起痕试验的试样尺寸面积为50mm*120mm,厚度为6mm

poYBAGOHEQOAKl0QAAKTOwHSJIg801.png漏电起痕试验机
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 试验机
    +关注

    关注

    0

    文章

    1124

    浏览量

    17018
收藏 人收藏
    相关推荐
    热点推荐

    程斯-漏电测试仪-英文视频.

    测试仪
    csizhineng
    发布于 :2025年02月22日 14:23:48

    程斯-漏电测试仪—解说视频

    测试仪
    jf_62302303
    发布于 :2025年02月19日 13:42:43

    诚卫-漏电试验仪-解说视频

    仪器仪表
    chenweizwg
    发布于 :2025年02月18日 16:28:42

    傲颖-漏电试验仪-解说视频

    测试仪
    jf_12990097
    发布于 :2025年02月18日 09:54:11

    漏电试验

    指标。电化的发生可能会导致电气设备的性能退化,甚至引起设备故障,因此,耐电化性能成为了评估绝缘材料质量和可靠性的关键指标之一。耐漏电
    的头像 发表于 01-13 11:20 407次阅读
    <b class='flag-5'>漏电</b><b class='flag-5'>起</b><b class='flag-5'>痕</b><b class='flag-5'>试验</b>

    开关电源漏电怎么办?开关电源漏电流标准是什么?

    流标准是多少?下面我们了解一些开关电源故障处理,这样我们就知道开关电源漏电怎么办怎么处理了。 开关电源漏电怎么办   开关电源漏电怎么办,开关电源一次高压通过高频变压器隔离,输出端理论
    发表于 01-09 13:59

    漏电开关与空气开关区别

    Breaker,简称RCBO)和空气开关(Circuit Breaker,简称CB)是两种常见的电气保护装置。它们虽然在功能上有所重叠,但在设计和应用上存在明显的区别漏电开关(RCBO) 定义与功能 漏电开关是一种用于检测
    的头像 发表于 12-30 15:53 904次阅读

    如何提高电线电缆的耐电性能?

    材料选择与优化 选用高性能绝缘材料 :选择具有高绝缘电阻、高介电强度和良好化学稳定性的绝缘材料是提高耐电性能的基础。例如,交联聚乙烯(XLPE)具有优异的电气性能,其分子链之间通过交联形成三维
    的头像 发表于 12-27 13:53 391次阅读
    如何提高电线电缆的耐电<b class='flag-5'>痕</b>性能?

    电线电缆耐电试验高压电源的作用

    提供电场强度 在电线电缆耐电试验中,高压电源的首要作用是提供足够的电场强度。就像在实际的电力传输和使用场景中,电线电缆会承受一定的电压,这个电压在其周围形成电场。在试验里,
    的头像 发表于 12-24 14:22 384次阅读
    电线电缆耐电<b class='flag-5'>痕</b><b class='flag-5'>试验</b>中<b class='flag-5'>高压</b>电源的作用

    什么是泄漏电试验

    流在介质中分二个途径,一是沿表面流过的称表面泄漏电流;二是沿介质内部流过的称体积泄漏电流。二者之和为介质的总泄漏电流。泄漏电试验的意义泄
    的头像 发表于 11-26 11:48 1305次阅读
    什么是泄<b class='flag-5'>漏电</b>流<b class='flag-5'>试验</b>?

    漏电试验仪:电气安全的重要保障

    绝缘材料的相比电化指数(CTI)和耐电化指数(PTI),以确保电气设备的电气安全性能。上海和晟HS-LD-1漏电
    的头像 发表于 10-23 10:31 487次阅读
    <b class='flag-5'>漏电</b><b class='flag-5'>起</b><b class='flag-5'>痕</b><b class='flag-5'>试验</b>仪:电气安全的重要保障

    简述开关电源两类漏电流的区别

    引言:在日常工作中,硬件设计工程师朋友们经常会接触到漏电流这个指标,其分为泄漏电流和耐压漏电流。本文将简述开关电源两类漏电流的区别,并简要分
    的头像 发表于 08-06 15:24 2072次阅读
    简述开关电源两类<b class='flag-5'>漏电</b>流的<b class='flag-5'>区别</b>

    漏电保护开关怎么用复位试验

    漏电保护开关,又称为漏电断路器或漏电保护器,是一种用于检测电路中漏电现象并及时切断电源的保护装置。它广泛应用于家庭、工业、商业等领域,对于保障人身安全和设备安全具有重要意义。 一、
    的头像 发表于 07-31 16:33 1763次阅读

    馈电开关漏电试验不跳闸原因分析

    现象,这就需要进行漏电试验以检测其性能。漏电试验是一种检测馈电开关在漏电情况下是否能够及时跳闸的试验
    的头像 发表于 07-22 10:24 3645次阅读

    火线漏电与零线漏电区别

    在电力系统中,火线和零线作为电路传输的重要组成部分,其安全性和稳定性对于整个电路的运行至关重要。然而,由于各种原因,火线和零线都可能出现漏电现象。本文将详细探讨火线漏电与零线漏电区别
    的头像 发表于 05-30 15:08 5563次阅读

    智能家居中的清凉“智”选,310V无刷吊扇驱动方案--其利天下

    炎炎夏日,如何营造出清凉、舒适且节能的室内环境成为了大众关注的焦点。吊扇作为一种经典的家用电器,以其大风量、长寿命、低能耗等优势,依然是众多家庭的首选。而随着智能控制技术与无刷电机技术的不断进步,吊扇正朝着智能化、高效化、低噪化的方向发展。那么接下来小编将结合目前市面上的指标,详细为大家讲解其利天下有限公司推出的无刷吊扇驱动方案。▲其利天下无刷吊扇驱动方案一

    其利天下技术
    1天前
    445

    电源入口处防反接电路-汽车电子硬件电路设计

    一、为什么要设计防反接电路电源入口处接线及线束制作一般人为操作,有正极和负极接反的可能性,可能会损坏电源和负载电路;汽车电子产品电性能测试标准ISO16750-2的4.7节包含了电压极性反接测试,汽车电子产品须通过该项测试。二、防反接电路设计1.基础版:二极管串联二极管是最简单的防反接电路,因为电源有电源路径(即正极)和返回路径(即负极,GND),那么用二极

    张飞实战电子官方
    2天前
    496

    半导体芯片需要做哪些测试

    首先我们需要了解芯片制造环节做⼀款芯片最基本的环节是设计->流片->封装->测试,芯片成本构成⼀般为人力成本20%,流片40%,封装35%,测试5%(对于先进工艺,流片成本可能超过60%)。测试其实是芯片各个环节中最“便宜”的一步,在这个每家公司都喊着“CostDown”的激烈市场中,人力成本逐年攀升,晶圆厂和封装厂都在乙方市场中“叱咤风云”,唯独只有测试显

    汉通达
    2天前
    598

    解决方案 | 芯佰微赋能示波器:高速ADC、USB控制器和RS232芯片——高性能示波器的秘密武器!

    示波器解决方案总述:示波器是电子技术领域中不可或缺的精密测量仪器,通过直观的波形显示,将电信号随时间的变化转化为可视化图形,使复杂的电子现象变得清晰易懂。无论是在科研探索、工业检测还是通信领域,示波器都发挥着不可替代的作用,帮助工程师和技术人员深入剖析电信号的细节,精准定位问题所在,为创新与发展提供坚实的技术支撑。一、技术瓶颈亟待突破性能指标受限:受模拟前端

    芯佰微电子
    2天前
    1.4k

    硬件设计基础----运算放大器

    1什么是运算放大器运算放大器(运放)用于调节和放大模拟信号,运放是一个内含多级放大电路的集成器件,如图所示:左图为同相位,Vn端接地或稳定的电平,Vp端电平上升,则输出端Vo电平上升,Vp端电平下降,则输出端Vo电平下降;右图为反相位,Vp端接地或稳定的电平,Vn端电平上升,则输出端Vo电平下降,Vn端电平下降,则输出端Vo电平上升2运算放大器的性质理想运算

    张飞实战电子官方
    05-08 19:34
    476

    ElfBoard技术贴|如何调整eMMC存储分区

    ELF 2开发板基于瑞芯微RK3588高性能处理器设计,拥有四核ARM Cortex-A76与四核ARM Cortex-A55的CPU架构,主频高达2.4GHz,内置6TOPS算力的NPU,这一设计让它能够轻松驾驭多种深度学习框架,高效处理各类复杂的AI任务。

    ElfBoard
    05-08 15:01
    845

    米尔基于MYD-YG2LX系统启动时间优化应用笔记

    1.概述MYD-YG2LX采用瑞萨RZ/G2L作为核心处理器,该处理器搭载双核Cortex-A55@1.2GHz+Cortex-M33@200MHz处理器,其内部集成高性能3D加速引擎Mail-G31GPU(500MHz)和视频处理单元(支持H.264硬件编解码),16位的DDR4-1600/DDR3L-1333内存控制器、千兆以太网控制器、USB、CAN、

    米尔电子
    05-08 08:07
    342

    运放技术——基本电路分析

    虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称

    张飞实战电子官方
    05-07 19:32
    446

    飞凌嵌入式携手中移物联,谱写全国产化方案新生态

    4月22日,飞凌嵌入式“2025嵌入式及边缘AI技术论坛”在深圳成功举办。中移物联网有限公司(以下简称“中移物联”)携OneOS操作系统与飞凌嵌入式共同推出的工业级核心板亮相会议展区,操作系统产品部高级专家严镭受邀作《OneOS工业操作系统——助力国产化智能制造》主题演讲。

    飞凌嵌入式
    05-07 11:26
    1.4k

    ATA-2022B高压放大器在螺栓松动检测中的应用

    实验名称:ATA-2022B高压放大器在螺栓松动检测中的应用实验方向:超声检测实验设备:ATA-2022B高压放大器、函数信号发生器,压电陶瓷片,数据采集卡,示波器,PC等实验内容:本研究基于振动声调制的螺栓松动检测方法,其中低频泵浦波采用单频信号,而高频探测波采用扫频信号,利用泵浦波和探测波在接触面的振动声调制响应对螺栓的松动程度进行检测。通过螺栓松动检测

    Aigtek安泰电子
    05-06 18:44
    1.1k

    MOS管驱动电路——电机干扰与防护处理

    此电路分主电路(完成功能)和保护功能电路。MOS管驱动相关知识:1、跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压(Vbe类似)高于一定的值,就可以了。MOS管和晶体管向比较c,b,e—–>d(漏),g(栅),s(源)。2、NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以

    张飞实战电子官方
    05-06 19:34
    489

    压敏(MOV)在电机上的应用剖析

    一前言有刷直流电机是一种较为常见的直流电机。它的主要特点包括:1.结构相对简单,由定子、转子、电刷和换向器等组成;2.通过电刷与换向器的接触来实现电流的换向,从而使电枢绕组中的电流方向周期性改变,保证电机持续运转;3.具有调速性能较好等优点,可以通过改变电压等方式较为方便地调节转速。有刷直流电机在许多领域都有应用,比如一些电动工具、玩具、小型机械等。但它也存

    深圳市韬略科技有限公司
    05-06 11:34
    306

    硬件原理图学习笔记

    这一个星期认真学习了硬件原理图的知识,做了一些笔记,方便以后查找。硬件原理图分为三类1.管脚类(gpio)和门电路类输入输出引脚,上拉电阻,三极管与门,或门,非门上拉电阻:正向标志作用,给悬空的引脚一个确定的状态三极管:反向三极管(gpio输出高电平,NP两端导通,被控制端导通,电压为0)->NPN正向三极管(gpio输出低电平,PN两端导通,被控制端导通,

    张飞实战电子官方
    04-30 18:40
    508

    TurMass™ vs LoRa:无线通讯模块的革命性突破

    TurMass™凭借其高传输速率、强大并发能力、双向传输、超强抗干扰能力、超远传输距离、全国产技术、灵活组网方案以及便捷开发等八大优势,在无线通讯领域展现出强大的竞争力。

    道生物联
    05-06 10:50
    1.2k

    RZT2H CR52双核BOOT流程和例程代码分析

    RZT2H是多核处理器,启动时,需要一个“主核”先启动,然后主核根据规则,加载和启动其他内核。本文以T2H内部的CR52双核为例,说明T2H多核启动流程。

    RA生态工作室
    04-03 17:14
    2.1k