~输入失调电压低且噪声低,有助于提高传感器电路的精度~
全球知名半导体制造商ROHM(总部位于日本京都市)开发出一款超小型封装的CMOS运算放大器“TLR377GYZ”,该产品非常适合在智能手机和小型物联网设备等应用中放大温度、压力、流量等的传感器检测信号。
智能手机和物联网终端越来越小型化,这就要求搭载的元器件也要越来越小。另一方面,要想提高应用产品的控制能力,就需要高精度地放大来自传感器的微小信号,因此需要在保持高精度的前提下实现小型化。在这样的背景下,ROHM通过进一步改进多年来铸就的“电路设计技术”、“工艺技术”和“封装技术”,开发出同时满足“小型”和“高精度”两种需求的运算放大器。
新产品通过进一步改进ROHM多年来铸就的“电路设计技术”、“工艺技术”和“封装技术”,成功地实现了通常认为运算放大器难以同时实现的小型化和高精度。
造成运算放大器误差的因素通常包括“输入失调电压”*1和“噪声”。两者都是与放大精度相关的项目,都可以通过扩大内置晶体管尺寸得到抑制,然而这又涉及到与小型化之间的权衡关系。通过嵌入利用ROHM自有电路设计技术开发出来的失调电压校正电路,新产品在保持晶体管尺寸不变的前提下实现了最高仅1mV的低输入失调电压。另外,新产品不仅利用ROHM自有的工艺技术改善了常见的闪烁噪声*2,还通过从元件层面重新调整电阻分量,实现了超低噪声,等效输入噪声电压密度*3仅为12nV/√Hz。
此外,新产品采用了WLCSP(Wafer Level Chip Size Package)封装,该封装利用ROHM自有的封装技术将引脚间距减小到了0.3mm。与以往产品相比,尺寸减小了约69%;与以往的小型产品相比,尺寸减小了约46%。
新产品已于2024年5月开始暂以月产10万个的规模投入量产(样品价格220日元/个,不含税)。为了便于客户进行替换评估和初期评估,ROHM还提供已安装了IC可支持SSOP6封装的转换板。新产品和转换板均已开始网售,通过Ameya360电商平台均可购买。另外,还可以从ROHM官网上获取验证用的仿真模型——高精度SPICE模型“ROHM Real Model”*4。
未来,ROHM将继续致力于提高运算放大器的性能,追求更小型、更高精度、以及融入ROHM自有超低静态电流技术的更低功耗,通过更先进的应用产品控制技术,为解决社会问题持续贡献力量。
产品主要特性
新产品精度高且尺寸超小,并内置移动设备所需的关断功能,可减少待机期间的消耗电流。
应用示例
・智能手机、配有检测放大器的小型物联网设备等
电商销售信息
开始销售时间:2024年5月起
电商平台:Ameya360
新产品在其他电商平台也将逐步发售。
・产品型号:TLR377GYZ
・已安装IC的转换板:TLR377GYZ-EVK-001
关于高精度仿真模型
“ROHM Real Model”
在新产品验证用的仿真模型中,利用ROHM自有的建模技术,忠实地再现了实际IC的电气特性和温度特性,成功地使仿真值与IC实物的值完全一致。ROHM提供这种高精度SPICE模型“ROHM Real Model”,通过可靠的验证,可有效防止实际试制后的返工等情况发生,有助于提高应用产品的开发效率。
这种SPICE模型可通过ROHM官网获取。
术语解说
*1) 输入失调电压
运算放大器输入引脚间产生的误差电压称为“输入失调电压”。
*2) 闪烁噪声
半导体等电子元器件中一定会产生的一种噪声。由于功率与频率成反比,因此频率越低,闪烁噪声越大。也被称为“1/f 噪声”或“粉红噪声”。除此之外,噪声还包括热噪声(白噪声)等不同类型的噪声。
*3) 等效输入噪声电压密度
使输入引脚间短路、并将输出端出现的噪声电压密度折算到输入端后得到的值。由于放大器存在增益(放大系数),因此可以通过输出噪声电压密度除以增益来合理评估放大器本身的噪声特性。
*4) ROHM Real Model
使用ROHM自有的建模技术,成功地使仿真值与实际IC的值完全一致的高精度仿真模型。
-
CMOS
+关注
关注
58文章
5906浏览量
237748 -
运算放大器
+关注
关注
216文章
5525浏览量
175277 -
罗姆半导体
+关注
关注
0文章
60浏览量
14743
原文标题:新品 | ROHM开发出世界超小CMOS运算放大器,非常适用于智能手机和小型物联网设备等应用
文章出处:【微信号:罗姆半导体集团,微信公众号:罗姆半导体集团】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
运算放大器的输入输出特性 运算放大器的噪声分析与抑制
线性运算放大器和非线性运算放大器的区别
运算放大器和普通放大器的区别
运算放大器的基本原理 运算放大器的应用实例
贸泽开售ROHM TLR377GYZ CMOS运算放大器
运算放大器的输入电阻怎么算
ROHM发布创新超小型CMOS运算放大器TLR377GYZ
AMEYA360代理品牌:ROHM开发出世界超小CMOS运算放大器,适用于智能手机和小型物联网设备等应用

ROHM开发出世界超小CMOS运算放大器, 非常适用于智能手机和小型物联网设备等应用

运算放大器和仪表放大器的区别

半导体芯片需要做哪些测试
首先我们需要了解芯片制造环节做⼀款芯片最基本的环节是设计->流片->封装->测试,芯片成本构成⼀般为人力成本20%,流片40%,封装35%,测试5%(对于先进工艺,流片成本可能超过60%)。测试其实是芯片各个环节中最“便宜”的一步,在这个每家公司都喊着“CostDown”的激烈市场中,人力成本逐年攀升,晶圆厂和封装厂都在乙方市场中“叱咤风云”,唯独只有测试显

解决方案 | 芯佰微赋能示波器:高速ADC、USB控制器和RS232芯片——高性能示波器的秘密武器!
示波器解决方案总述:示波器是电子技术领域中不可或缺的精密测量仪器,通过直观的波形显示,将电信号随时间的变化转化为可视化图形,使复杂的电子现象变得清晰易懂。无论是在科研探索、工业检测还是通信领域,示波器都发挥着不可替代的作用,帮助工程师和技术人员深入剖析电信号的细节,精准定位问题所在,为创新与发展提供坚实的技术支撑。一、技术瓶颈亟待突破性能指标受限:受模拟前端

硬件设计基础----运算放大器
1什么是运算放大器运算放大器(运放)用于调节和放大模拟信号,运放是一个内含多级放大电路的集成器件,如图所示:左图为同相位,Vn端接地或稳定的电平,Vp端电平上升,则输出端Vo电平上升,Vp端电平下降,则输出端Vo电平下降;右图为反相位,Vp端接地或稳定的电平,Vn端电平上升,则输出端Vo电平下降,Vn端电平下降,则输出端Vo电平上升2运算放大器的性质理想运算

ElfBoard技术贴|如何调整eMMC存储分区
ELF 2开发板基于瑞芯微RK3588高性能处理器设计,拥有四核ARM Cortex-A76与四核ARM Cortex-A55的CPU架构,主频高达2.4GHz,内置6TOPS算力的NPU,这一设计让它能够轻松驾驭多种深度学习框架,高效处理各类复杂的AI任务。

米尔基于MYD-YG2LX系统启动时间优化应用笔记
1.概述MYD-YG2LX采用瑞萨RZ/G2L作为核心处理器,该处理器搭载双核Cortex-A55@1.2GHz+Cortex-M33@200MHz处理器,其内部集成高性能3D加速引擎Mail-G31GPU(500MHz)和视频处理单元(支持H.264硬件编解码),16位的DDR4-1600/DDR3L-1333内存控制器、千兆以太网控制器、USB、CAN、

运放技术——基本电路分析
虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称

飞凌嵌入式携手中移物联,谱写全国产化方案新生态
4月22日,飞凌嵌入式“2025嵌入式及边缘AI技术论坛”在深圳成功举办。中移物联网有限公司(以下简称“中移物联”)携OneOS操作系统与飞凌嵌入式共同推出的工业级核心板亮相会议展区,操作系统产品部高级专家严镭受邀作《OneOS工业操作系统——助力国产化智能制造》主题演讲。

ATA-2022B高压放大器在螺栓松动检测中的应用
实验名称:ATA-2022B高压放大器在螺栓松动检测中的应用实验方向:超声检测实验设备:ATA-2022B高压放大器、函数信号发生器,压电陶瓷片,数据采集卡,示波器,PC等实验内容:本研究基于振动声调制的螺栓松动检测方法,其中低频泵浦波采用单频信号,而高频探测波采用扫频信号,利用泵浦波和探测波在接触面的振动声调制响应对螺栓的松动程度进行检测。通过螺栓松动检测

MOS管驱动电路——电机干扰与防护处理
此电路分主电路(完成功能)和保护功能电路。MOS管驱动相关知识:1、跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压(Vbe类似)高于一定的值,就可以了。MOS管和晶体管向比较c,b,e—–>d(漏),g(栅),s(源)。2、NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以

压敏(MOV)在电机上的应用剖析
一前言有刷直流电机是一种较为常见的直流电机。它的主要特点包括:1.结构相对简单,由定子、转子、电刷和换向器等组成;2.通过电刷与换向器的接触来实现电流的换向,从而使电枢绕组中的电流方向周期性改变,保证电机持续运转;3.具有调速性能较好等优点,可以通过改变电压等方式较为方便地调节转速。有刷直流电机在许多领域都有应用,比如一些电动工具、玩具、小型机械等。但它也存

硬件原理图学习笔记
这一个星期认真学习了硬件原理图的知识,做了一些笔记,方便以后查找。硬件原理图分为三类1.管脚类(gpio)和门电路类输入输出引脚,上拉电阻,三极管与门,或门,非门上拉电阻:正向标志作用,给悬空的引脚一个确定的状态三极管:反向三极管(gpio输出高电平,NP两端导通,被控制端导通,电压为0)->NPN正向三极管(gpio输出低电平,PN两端导通,被控制端导通,

TurMass™ vs LoRa:无线通讯模块的革命性突破
TurMass™凭借其高传输速率、强大并发能力、双向传输、超强抗干扰能力、超远传输距离、全国产技术、灵活组网方案以及便捷开发等八大优势,在无线通讯领域展现出强大的竞争力。

RZT2H CR52双核BOOT流程和例程代码分析
RZT2H是多核处理器,启动时,需要一个“主核”先启动,然后主核根据规则,加载和启动其他内核。本文以T2H内部的CR52双核为例,说明T2H多核启动流程。

干簧继电器在RF信号衰减中的应用与优势
在电子测试领域,RF(射频)评估是不可或缺的一部分。无论是研发阶段的性能测试,还是生产环节的质量检测,RF测试设备都扮演着关键角色。然而,要实现精准的RF评估,测试设备需要一种特殊的电路——衰减电路。这些电路的作用是调整RF信号的强度,以便测试设备能够准确地评估RF组件和RF电路的各个方面。衰减器的挑战衰减器的核心功能是校准RF信号的强度。为了实现这一点,衰

ElfBoard嵌入式教育科普|ADC接口全面解析
当代信息技术体系中,嵌入式系统接口作为数据交互的核心基础设施,构成了设备互联的神经中枢。基于标准化通信协议与接口规范的技术架构,实现了异构设备间的高效数据交换与智能化协同作业。本文选取模数转换接口ADC作为技术解析切入点,通过系统阐释其工作机理、性能特征及重要参数,为嵌入式学习者爱好者构建全维度接口技术认知框架。
评论