近年来印度的发电和输电能力已得到了显著的改善,但仍有 2.1% 的能源缺口,并且约有 2 万个村庄没有纳入电网覆盖范围。不仅如此,通往城乡的电力供应仍旧不稳定。因此,柴油发电机被大范围地应用于分散式供电。柴油发电机(图 1 左)虽然价格低廉,但普遍效率低下,同时会对周边环境和居民的健康带来潜在危害。
图 1. 左图:为印度的电信塔供电的柴油发电机。右图:PEM 燃料电池。
为解决这一难题,印度国家化学实验室(National Chemistry Laboratory, 简称 NCL)联合印度科学与工业研究理事会(Council of Scientific and Industrial Research,简称 CSIR)下属的两所实验室——中央电化学研究所(Central Electrochemical Research Institute,简称 CECRI)和国家物理实验室(National Physical Laboratory,简称 NPL),着手研究清洁、高效、可靠的发电技术为电信塔供电,并期望最终能够为建筑物提供能源。
质子交换膜燃料电池(proton exchange membrane fuel cell,简称 PEM 燃料电池或 PEMFC,见图 1)是一种兼顾了成本和污染问题的理想解决方案。如今许多应用中都能看到 PEM 燃料电池的身影,它正逐步替代传统的电力技术。燃料电池的优势明显:碳排量小、噪音低、燃料兼容性强,与其他可再生能源解决方案具有良好的互补性,因此适用于交通运输、住宅楼、办公室以及一些工业领域。PEM 燃料电池系统的总转换效率超过 30%(柴油发电机约为 22%~25%),当使用纯氢气发电时,排放物只有水蒸气。
PEM 燃料电池的工作原理
PEM 燃料电池中包含一个膜电极组件(membrane electrode assembly,简称 MEA),由气体扩散层、电极和聚合物电解质膜构成。在 MEA 内发生电化学反应,产生电能。
在单个 PEM 燃料电池中,氢气流向组件的阳极,在阳极催化剂的作用下分解为质子和电子。电子在通过电极中的碳纳米颗粒网络传导至另一侧的阴极之前,会先输出电流,为设备提供电能。与此同时,质子穿过质子交换膜到达阴极,空气中的氧气通过 MEA 中的气体扩散层(gas diffusion layer,简称 GDL)到达阴极(图 2)。
图 2. PEM 燃料电池的概念图。氢气进入阳极,在阳极催化剂的活性位点上发生反应, 分解成质子和电子。电子经过有负载的外电路传导到阴极,质子穿过质子交换膜中的电解质迁移到阴极。PEM 由可传导质子但不传导电子的固体聚合物制成。图注: Recycling – 循环; Heat – 热; Fuel – 燃料; Anode – 阳极; Cathode – 阴极; O2 from Air – 空气中的氧气;Air and Water Vapor – 空气和水蒸汽;Hydrogen – 氢;Oxygen – 氧;Proton –质子;Electron – 电子;Gas Diffusion Layer – 气体扩散层;Catalyst – 催化剂; Proton Exchange Membrane – 质子交换膜
在阴极催化剂的活性位点上,质子与氧气及电子反应生成水;副产物只有水和热量。多个单体电池相互串联,便组成了 PEM 燃料电池堆(图 3)。
图 3. PEM 燃料电池堆的示例,它包含多层重复单元。图注:ElectroPhen Biopolar Plate – 双极板;Membrane Electrode Assembly – 膜电极组件;Gas Flow Channels – 气体流道;Repeat Unit – 重复单元
燃料电池的输出功率和效率取决于多种因素,其中包括:阳极和阴极活性层的催化活性、电极将气体扩散电极中的液态水输送至外部的能力、碳网络的电导率和孔隙率、反应气体流向催化剂的传输过程、PEM 的质子电导率以及双极板的电导率。
寻找最高效的配置
为印度的电信塔选择 PEM 燃料电池的关键在于找到转化效率最高的最优结构。众所周知,对一个设计因素进行优化时,可能会降低另一个因素的效率。举例来说,增加气体扩散层的孔隙率更有利于氢气和空气自由地进入、水分自由地离开,但可能会降低电导率。
由 NCL 项目的首席科学家 Ashish Lele 博士领衔的专业团队针对不同的配置进行了模拟和分析,力求为印度电信塔使用的 PEM 燃料电池寻找最优性能组合。他表示:“我们希望进一步了解碳电极中发生的反应,研究电极中的反应气体和质子的传输过程如何影响总反应速率。我们的最终目标是了解各类不同参数对 PEM 燃料电池整体性能的影响,这些参数包括工作条件、流场的几何形状和 MEA 结构等。”
Lele 和他的团队模拟了反应气体的对流、催化剂层中的伴随反应,以及质子在 PEM 燃料电池中的传导过程。在模拟过程中,他们使用了 COMSOL Multiphysics® 软件的化学反应建模和电化学阻抗谱(EIS)仿真功能。EIS 方法通过测量阻抗和频率响应来表征电化学系统。下一页中的短文简要介绍了COMSOL® 软件的 EIS 仿真功能。
“COMSOL 软件出色的功能让我们能同时兼顾质量平衡、动量平衡、物质平衡和电荷平衡。”他解释说,“我们对不同参数进行了灵敏度分析,例如流场形状等设计参数、背压和化学当量等操作参数,以及离聚物-碳比等结构参数, 从而确定了各个参数对 PEM 燃料电池性能产生的影响。”在 COMSOL 软件的帮助下,他们能够深入理解上述变量对 PEM 燃料电池总功率输出的影响。
图 4 展示了化学当量(即反应气体的实际流入量和产生给定电量所需的反应气体量之间的比率)在平行流场条件下带来的影响。
图 4. 绘图显示了不同空气化学当量对应的燃料电池产生的电流密度。当空气- 燃料比为 5 时,电流输出不仅更大,而且更加统一。图注:Air Stoichiometry – 空气的化学当量
Lele 团队研究了不同的流场类型, 随后从中选定了效率最高的流道形状和布局。“我们分析了四种常见的流场类型:平行、蛇形、针状和叉指形。”他解释说,“COMSOL 的分析结果表明,最后一类(叉指形)流场具有特定的优势, 更适合应用于高温 PEM 燃料电池。”
通过比较不同流动形状下的电流密度,团队进一步证实了叉指形流场是最佳选择(图 5)。具体来说,叉指形流场中的反应速率较快的原因在于电极和 GDL 中由压力差驱动的对流质量传递, 而此类质量传递是其他三种流动类型所不具备的。叉指形流场中的反应速率越快,反应效率就越高,氢气和氧气的消耗量也随之增加。压力曲线(图 5)清晰地显示了两个连续通道间的压降与 GDL 内产生对流之间的关系。
图 5. 左图:比较叉指形流场和平行流场设计中的燃料电池产生的平均电流密度与空气化学当量之间的函数关系。右图:叉指形流场设计中微流道的内部流体压力
迈向绿色燃料之路
通过使用 COMSOL 对 PEM 燃料电池的配置进行分析,研究团队找到了最佳的流动模式、碳纤维层和气体输入水平,从而最大限度地提高了功率输出。Lele 总结道:“在 COMSOL 的帮助下,我们研究了所有相关变量对最终输出的影响。在运行了灵敏度分析后,就能够找出关键变量。”
NCL 研究人员的下一步计划是将该技术进行授权推广,并将 PEM 燃料电池进行大规模量产。他们非常期待能为印度电信塔提供更清洁、更可靠的能源服务。他们希望此项成果能为房屋建筑和交通网络稳定地提供绿色能源,推动整个国家迈向绿色燃料之路。
-
燃料电池
+关注
关注
26文章
971浏览量
96095 -
发电机
+关注
关注
26文章
1679浏览量
69063
原文标题:燃料电池有望在印度取代柴油发电机
文章出处:【微信号:COMSOL-China,微信公众号:COMSOL】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
燃料电池测试负载的工作原理是什么?
燃料电池测试–NI的解决方案
采用Simulink实现PEM燃料电池模拟器
甲醇燃料电池有什么优点?
磷酸燃料电池的原理是什么?
燃料电池的工作原理及应用
氢燃料电池的工作原理(详细)
燃料电池的基本工作原理图解
重力对PEM燃料电池阴极水管理影响
燃料电池的工作原理及系统组成

燃料电池工作原理 燃料电池与传统电池的区别

瑞萨RA8系列教程 | 基于 RASC 生成 Keil 工程
对于不习惯用 e2 studio 进行开发的同学,可以借助 RASC 生成 Keil 工程,然后在 Keil 环境下愉快的完成开发任务。

共赴之约 | 第二十七届中国北京国际科技产业博览会圆满落幕
作为第二十七届北京科博会的参展方,芯佰微有幸与800余家全球科技同仁共赴「科技引领创享未来」之约!文章来源:北京贸促5月11日下午,第二十七届中国北京国际科技产业博览会圆满落幕。本届北京科博会主题为“科技引领创享未来”,由北京市人民政府主办,北京市贸促会,北京市科委、中关村管委会,北京市经济和信息化局,北京市知识产权局和北辰集团共同承办。5万平方米的展览云集

道生物联与巍泰技术联合发布 RTK 无线定位系统:TurMass™ 技术与厘米级高精度定位的深度融合
道生物联与巍泰技术联合推出全新一代 RTK 无线定位系统——WTS-100(V3.0 RTK)。该系统以巍泰技术自主研发的 RTK(实时动态载波相位差分)高精度定位技术为核心,深度融合道生物联国产新兴窄带高并发 TurMass™ 无线通信技术,为室外大规模定位场景提供厘米级高精度、广覆盖、高并发、低功耗、低成本的一站式解决方案,助力行业智能化升级。

智能家居中的清凉“智”选,310V无刷吊扇驱动方案--其利天下
炎炎夏日,如何营造出清凉、舒适且节能的室内环境成为了大众关注的焦点。吊扇作为一种经典的家用电器,以其大风量、长寿命、低能耗等优势,依然是众多家庭的首选。而随着智能控制技术与无刷电机技术的不断进步,吊扇正朝着智能化、高效化、低噪化的方向发展。那么接下来小编将结合目前市面上的指标,详细为大家讲解其利天下有限公司推出的无刷吊扇驱动方案。▲其利天下无刷吊扇驱动方案一

电源入口处防反接电路-汽车电子硬件电路设计
一、为什么要设计防反接电路电源入口处接线及线束制作一般人为操作,有正极和负极接反的可能性,可能会损坏电源和负载电路;汽车电子产品电性能测试标准ISO16750-2的4.7节包含了电压极性反接测试,汽车电子产品须通过该项测试。二、防反接电路设计1.基础版:二极管串联二极管是最简单的防反接电路,因为电源有电源路径(即正极)和返回路径(即负极,GND),那么用二极

半导体芯片需要做哪些测试
首先我们需要了解芯片制造环节做⼀款芯片最基本的环节是设计->流片->封装->测试,芯片成本构成⼀般为人力成本20%,流片40%,封装35%,测试5%(对于先进工艺,流片成本可能超过60%)。测试其实是芯片各个环节中最“便宜”的一步,在这个每家公司都喊着“CostDown”的激烈市场中,人力成本逐年攀升,晶圆厂和封装厂都在乙方市场中“叱咤风云”,唯独只有测试显

解决方案 | 芯佰微赋能示波器:高速ADC、USB控制器和RS232芯片——高性能示波器的秘密武器!
示波器解决方案总述:示波器是电子技术领域中不可或缺的精密测量仪器,通过直观的波形显示,将电信号随时间的变化转化为可视化图形,使复杂的电子现象变得清晰易懂。无论是在科研探索、工业检测还是通信领域,示波器都发挥着不可替代的作用,帮助工程师和技术人员深入剖析电信号的细节,精准定位问题所在,为创新与发展提供坚实的技术支撑。一、技术瓶颈亟待突破性能指标受限:受模拟前端

硬件设计基础----运算放大器
1什么是运算放大器运算放大器(运放)用于调节和放大模拟信号,运放是一个内含多级放大电路的集成器件,如图所示:左图为同相位,Vn端接地或稳定的电平,Vp端电平上升,则输出端Vo电平上升,Vp端电平下降,则输出端Vo电平下降;右图为反相位,Vp端接地或稳定的电平,Vn端电平上升,则输出端Vo电平下降,Vn端电平下降,则输出端Vo电平上升2运算放大器的性质理想运算

ElfBoard技术贴|如何调整eMMC存储分区
ELF 2开发板基于瑞芯微RK3588高性能处理器设计,拥有四核ARM Cortex-A76与四核ARM Cortex-A55的CPU架构,主频高达2.4GHz,内置6TOPS算力的NPU,这一设计让它能够轻松驾驭多种深度学习框架,高效处理各类复杂的AI任务。

米尔基于MYD-YG2LX系统启动时间优化应用笔记
1.概述MYD-YG2LX采用瑞萨RZ/G2L作为核心处理器,该处理器搭载双核Cortex-A55@1.2GHz+Cortex-M33@200MHz处理器,其内部集成高性能3D加速引擎Mail-G31GPU(500MHz)和视频处理单元(支持H.264硬件编解码),16位的DDR4-1600/DDR3L-1333内存控制器、千兆以太网控制器、USB、CAN、

运放技术——基本电路分析
虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称

飞凌嵌入式携手中移物联,谱写全国产化方案新生态
4月22日,飞凌嵌入式“2025嵌入式及边缘AI技术论坛”在深圳成功举办。中移物联网有限公司(以下简称“中移物联”)携OneOS操作系统与飞凌嵌入式共同推出的工业级核心板亮相会议展区,操作系统产品部高级专家严镭受邀作《OneOS工业操作系统——助力国产化智能制造》主题演讲。

ATA-2022B高压放大器在螺栓松动检测中的应用
实验名称:ATA-2022B高压放大器在螺栓松动检测中的应用实验方向:超声检测实验设备:ATA-2022B高压放大器、函数信号发生器,压电陶瓷片,数据采集卡,示波器,PC等实验内容:本研究基于振动声调制的螺栓松动检测方法,其中低频泵浦波采用单频信号,而高频探测波采用扫频信号,利用泵浦波和探测波在接触面的振动声调制响应对螺栓的松动程度进行检测。通过螺栓松动检测

MOS管驱动电路——电机干扰与防护处理
此电路分主电路(完成功能)和保护功能电路。MOS管驱动相关知识:1、跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压(Vbe类似)高于一定的值,就可以了。MOS管和晶体管向比较c,b,e—–>d(漏),g(栅),s(源)。2、NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以

压敏(MOV)在电机上的应用剖析
一前言有刷直流电机是一种较为常见的直流电机。它的主要特点包括:1.结构相对简单,由定子、转子、电刷和换向器等组成;2.通过电刷与换向器的接触来实现电流的换向,从而使电枢绕组中的电流方向周期性改变,保证电机持续运转;3.具有调速性能较好等优点,可以通过改变电压等方式较为方便地调节转速。有刷直流电机在许多领域都有应用,比如一些电动工具、玩具、小型机械等。但它也存
评论