天线阵列是一组发射单元组成的天线系统。如果这些天线单元都相同,例如在全向阵列中,如果它们在一个轴上相互间隔距离相同,那么该阵列天线就称为线性阵列。此外,如果这些单元是由同一根电线上的电流所激励,那么将可以同步地对这些天线单元调整,线性阵列的各个单元是均衡一致的。
天线阵列
图1所示是一个四单元线性阵列,其中每个单元都是全向天线,单元之间以半波长分隔,假定采用相同电流来驱动每个单元(相同幅度和相位激励)。采用多个单元组成一个天线阵列与单个全向天线单元相比有效尺寸更大,这种天线具有更强方向性的总辐射图。
天线阵列的辐射图是每个单元辐射图的总和,每个单元的辐射图如图1所绘出的虚线圆所示。定向增益产生在这些单元之间的中线上。
这里值得注意的是,同一组物理阵列单元可以形成不同的天线辐射图,这样可以允许接收器调整波束方向以实现正确的信号接收。这也使得在生产这类天线时,一种天线尺寸可以适用于多种用途。即可以建立一个基本的单元结构,单元形成的辐射图可以由用户通过调整单元激励的方式来改变辐射图的形成。
再进一步讨论方向性问题。假设图1中的阵列实际上是由八个天线单元组成,单元间隔为半波长,其中一半的单元没有被激励。现在,再激励三个单元,形成一个七单元阵列系统,这些单元之间的间隔还是半波长(图2)。增加天线的尺寸来增加辐射图的方向性,即通过增加天线长度来实现。这样的结果是产生更窄波束,产生更高定向增益。由于这里仅增加了单元数量,定向增益的提高产生在相同方向上。相应地,在偏离辐射方向中心的地方增益大大地降低,因此在方向对准时所允许的误差将很小。这种阵列天线的另一个优势是,系统可以在不改变结构性设计的条件下改变信号发射方向。
图1
图1的定向增益集中在阵列中心线上,因为在这种情况下,激励相位与辐射图相位(图中未表示出)是相同的。零相位差意味着辐射图的迭加是一致的,因此四个或七个单元组成的系统很直观。在没有相同激励电流,即有意地对每个单元的激励电流逐个地采用一定相位偏移,这样相位相加的结果将与阵列中心呈一定角度。
当前实现相位调整的一个方法可以采用可编程移相器,其实现原理很简单,即不断地发送指令到移相器使波束很快地改变方向。因此,如果合理利用这个特点,该系统有很明显的可利用优势。
数字波束成形
波束成形器(beam former)是一种能在振幅和相位上控制单元激励的天线结构,图2提供了波束成形的一个基本示例。将图1改变成图2的系统,图2增加了三个激励单元。图1中“关断”的三个单元只是将其激励信号编程到零。激励信号有两个变量可以改变:幅度和相位。这两个量提高了控制的灵活性,调整主波束的滚降特性和旁瓣(side-lobe),增强信号的方向性,降低信号干扰。
天线单元有两个可变量:振幅和相位,这些量可以用一个复指数来表示,即一般所知的复数加权值Wk,下标k是线性单元的数量。上面的讨论说明了只要对电子移相器编程就能实现移相,而不必采用插入一定长度电缆或采用实现移相的无源电路。采用可变增益放大器(VGA),可以通过调整其增益的指令字来驱动,并具有某些开关约束。这些可调整变量的组合共同定义了波束成形的结构。
数字技术的应用
图2
以DSP形式来实现VGA和移相器单元,打开了在波束成形中嵌入各种智能特性之门。通过复杂的数学算法和闭环动态特性可以提供天线的容限和可靠性,以及升级的灵活性。这些数学实现方法相比于模拟方法可能更快,且更有效。
天线所获取的信号一般是射频信号、微波和毫米波,很明显这些频率不是当前数字处理技术所能处理的。因此,一个好的数字调制器和解调器一般都有一个数字电路来执行调制/解调功能。在通信系统中,该工作是在解调器上完成。在先进的通信系统中,其接收器有一个射频前端来实现信号下变频,将其变换到A/D转换器可以处理的频率。其余的频率变换是通过数字方式实现。
因此,我们有复数加权值和幂来产生一个在定向增益和方向上都具有很宽变化范围的天线辐射图。如果加权值具有自适应特性,我们就能在闭环控制下通过自动修正使其效用最大化,并优化一些功能特性,如最大化信噪比。
上面所讨论的情形类似于自适应均衡器,因为自适应均衡器也采用复数加权值来减少符号间干扰。在均衡器的应用中,我们会发送一个“训练序列”使均衡器熟悉信道特征,同样,自适应波束形成器在优化其辐射图所采用的技术中,我们也会用到类似的技术。
注意,符号间干扰受多信道传播影响。均衡器和自适应性天线提高了系统的性能,自适应天线可以消除多信道干扰的影响,使之不能到达接收器。因此,可以看出支持自适应均衡所开发的数字算法也能用于支持波束成形。
本文小结
如果天线能以上面的方式增强信号强度,或通过调整复数加权因素来增大蜂窝分割大小,在辐射图上生成波束峰值和零信号区,我们就称这种天线为智能天线。智能天线对无线系统的影响存在于两个方面:首先,与其它链接预算相比,定向天线上有很多分贝的可用信号强度;它会采用先进的硬核技术从接收器前端设计中减少几个额外的噪声分贝,或减少1dB的数字调制解调器损耗。
尽管以前的信号发射时,蜂窝内信号能量是均匀辐射,但其中大部分能量在树叶和建筑之间反射而浪费掉,而智能天线用精准的波束来对准用户天线,这意味着更高的信号强度和更少的信号干扰。这种可操控的辐射图完全适合无线信道的动态特性,因为无线信道的特性通常处于不断的变化之中。在第三代无线系统的设计过程中考虑这种技术特点。
责任编辑:gt
-
天线
+关注
关注
70文章
3255浏览量
141863 -
无线
+关注
关注
31文章
5521浏览量
175135 -
辐射
+关注
关注
1文章
607浏览量
36755
发布评论请先 登录
信道复用技术在移动通信中的应用
不同类型信道的特点与应用
如何优化无线信道管理
信道选择对网络性能的影响
OFDM和MIMO技术的关系是什么?
无线通信测试平台的技术原理和应用场景

LoRa技术农田自动无线智能灌溉系统
工业级天线有什么特点?
如何减少无线网络在同一信道内的干扰?

智能家居中的清凉“智”选,310V无刷吊扇驱动方案--其利天下
炎炎夏日,如何营造出清凉、舒适且节能的室内环境成为了大众关注的焦点。吊扇作为一种经典的家用电器,以其大风量、长寿命、低能耗等优势,依然是众多家庭的首选。而随着智能控制技术与无刷电机技术的不断进步,吊扇正朝着智能化、高效化、低噪化的方向发展。那么接下来小编将结合目前市面上的指标,详细为大家讲解其利天下有限公司推出的无刷吊扇驱动方案。▲其利天下无刷吊扇驱动方案一

电源入口处防反接电路-汽车电子硬件电路设计
一、为什么要设计防反接电路电源入口处接线及线束制作一般人为操作,有正极和负极接反的可能性,可能会损坏电源和负载电路;汽车电子产品电性能测试标准ISO16750-2的4.7节包含了电压极性反接测试,汽车电子产品须通过该项测试。二、防反接电路设计1.基础版:二极管串联二极管是最简单的防反接电路,因为电源有电源路径(即正极)和返回路径(即负极,GND),那么用二极

半导体芯片需要做哪些测试
首先我们需要了解芯片制造环节做⼀款芯片最基本的环节是设计->流片->封装->测试,芯片成本构成⼀般为人力成本20%,流片40%,封装35%,测试5%(对于先进工艺,流片成本可能超过60%)。测试其实是芯片各个环节中最“便宜”的一步,在这个每家公司都喊着“CostDown”的激烈市场中,人力成本逐年攀升,晶圆厂和封装厂都在乙方市场中“叱咤风云”,唯独只有测试显

解决方案 | 芯佰微赋能示波器:高速ADC、USB控制器和RS232芯片——高性能示波器的秘密武器!
示波器解决方案总述:示波器是电子技术领域中不可或缺的精密测量仪器,通过直观的波形显示,将电信号随时间的变化转化为可视化图形,使复杂的电子现象变得清晰易懂。无论是在科研探索、工业检测还是通信领域,示波器都发挥着不可替代的作用,帮助工程师和技术人员深入剖析电信号的细节,精准定位问题所在,为创新与发展提供坚实的技术支撑。一、技术瓶颈亟待突破性能指标受限:受模拟前端

硬件设计基础----运算放大器
1什么是运算放大器运算放大器(运放)用于调节和放大模拟信号,运放是一个内含多级放大电路的集成器件,如图所示:左图为同相位,Vn端接地或稳定的电平,Vp端电平上升,则输出端Vo电平上升,Vp端电平下降,则输出端Vo电平下降;右图为反相位,Vp端接地或稳定的电平,Vn端电平上升,则输出端Vo电平下降,Vn端电平下降,则输出端Vo电平上升2运算放大器的性质理想运算

ElfBoard技术贴|如何调整eMMC存储分区
ELF 2开发板基于瑞芯微RK3588高性能处理器设计,拥有四核ARM Cortex-A76与四核ARM Cortex-A55的CPU架构,主频高达2.4GHz,内置6TOPS算力的NPU,这一设计让它能够轻松驾驭多种深度学习框架,高效处理各类复杂的AI任务。

米尔基于MYD-YG2LX系统启动时间优化应用笔记
1.概述MYD-YG2LX采用瑞萨RZ/G2L作为核心处理器,该处理器搭载双核Cortex-A55@1.2GHz+Cortex-M33@200MHz处理器,其内部集成高性能3D加速引擎Mail-G31GPU(500MHz)和视频处理单元(支持H.264硬件编解码),16位的DDR4-1600/DDR3L-1333内存控制器、千兆以太网控制器、USB、CAN、

运放技术——基本电路分析
虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称

飞凌嵌入式携手中移物联,谱写全国产化方案新生态
4月22日,飞凌嵌入式“2025嵌入式及边缘AI技术论坛”在深圳成功举办。中移物联网有限公司(以下简称“中移物联”)携OneOS操作系统与飞凌嵌入式共同推出的工业级核心板亮相会议展区,操作系统产品部高级专家严镭受邀作《OneOS工业操作系统——助力国产化智能制造》主题演讲。

ATA-2022B高压放大器在螺栓松动检测中的应用
实验名称:ATA-2022B高压放大器在螺栓松动检测中的应用实验方向:超声检测实验设备:ATA-2022B高压放大器、函数信号发生器,压电陶瓷片,数据采集卡,示波器,PC等实验内容:本研究基于振动声调制的螺栓松动检测方法,其中低频泵浦波采用单频信号,而高频探测波采用扫频信号,利用泵浦波和探测波在接触面的振动声调制响应对螺栓的松动程度进行检测。通过螺栓松动检测

MOS管驱动电路——电机干扰与防护处理
此电路分主电路(完成功能)和保护功能电路。MOS管驱动相关知识:1、跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压(Vbe类似)高于一定的值,就可以了。MOS管和晶体管向比较c,b,e—–>d(漏),g(栅),s(源)。2、NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以

压敏(MOV)在电机上的应用剖析
一前言有刷直流电机是一种较为常见的直流电机。它的主要特点包括:1.结构相对简单,由定子、转子、电刷和换向器等组成;2.通过电刷与换向器的接触来实现电流的换向,从而使电枢绕组中的电流方向周期性改变,保证电机持续运转;3.具有调速性能较好等优点,可以通过改变电压等方式较为方便地调节转速。有刷直流电机在许多领域都有应用,比如一些电动工具、玩具、小型机械等。但它也存

硬件原理图学习笔记
这一个星期认真学习了硬件原理图的知识,做了一些笔记,方便以后查找。硬件原理图分为三类1.管脚类(gpio)和门电路类输入输出引脚,上拉电阻,三极管与门,或门,非门上拉电阻:正向标志作用,给悬空的引脚一个确定的状态三极管:反向三极管(gpio输出高电平,NP两端导通,被控制端导通,电压为0)->NPN正向三极管(gpio输出低电平,PN两端导通,被控制端导通,

TurMass™ vs LoRa:无线通讯模块的革命性突破
TurMass™凭借其高传输速率、强大并发能力、双向传输、超强抗干扰能力、超远传输距离、全国产技术、灵活组网方案以及便捷开发等八大优势,在无线通讯领域展现出强大的竞争力。

RZT2H CR52双核BOOT流程和例程代码分析
RZT2H是多核处理器,启动时,需要一个“主核”先启动,然后主核根据规则,加载和启动其他内核。本文以T2H内部的CR52双核为例,说明T2H多核启动流程。
评论