4 新的均流方案
本文提出的方案是基于前所述的每路加一个简单的RC网络检测其分配的电流大小。电容C两端的电压平均值就可以表征这路模块的电流大小,所以,对系统进行均流控制就是对各路RC网络C上电压进行均压。其均流原理图如图5所示。
图5中:Vbus为均流母线电压;
Vref为输出电压参考值;
Vs为输出电压的采样值。
其工作原理和过程如下:
通过检测RC网络中C两端的电压,作为电流信号,几路电流信号(本例只有两路)通过一个相同的电阻就得到了平均值均流母线,平均值均流母线电压值与负载有关,表征负载电流的大小。
然后将每路采样来的电流信号与母线电压比较,得到误差信号,去修正输出电压参考信号,从而对PWM控制器的占空比输出进行微调,达到均流和稳压的目的。
5 实测结果
样机是一台DC5V输入,2V/40A输出的4路Buck并联的开关电源,工作频率为200 kHz,带上满载进行测量每一路电流输出,均流效果好,误差在2%以下,电源输出稳定。当输出电流越大,即大功率并联的电源系统中,均流效果越好。
6 结语
这种方案使电流检测很方便,能高效率、低成本、简单、方便地实现并联系统的均流。
三、典型开关电源保护电路
多数LED应用利用功率转换和控制组件连接各种功率源,如交流电线、太阳能电池板或电池,来控制LED驱动装置的功率耗散。对这些接口加以保护,防止它们因过流和过温而受损,常常用到具有可复位能力的聚合物正温度系数(PPTC)组件(图)。可以与功率输入串联一个PolySwitch LVR组件,防止因电气短路、电路超载或用户误操作而受损。此外,放在输入端上的金属氧化物变阻(MOV)也有助于LED模块内的过压保护。典型开关电源保护电路:
四、基于UC3842的反激式开关电源设计
高频开关稳压电源由于具有效率高、体积小、重量轻等突出优点而得到了广泛应用。传统的开关电源控制电路普遍为电压型拓扑, 只有输出电压单闭控制环路, 系统响应慢, 线性调整率精度偏低。随着PWM 技术的飞速发展产生的电流型模式拓扑很快被大家认同和广泛应用。电流型控制系统是电压电流双闭环系统, 一个是检测输出电压的电压外环, 一个是检测开关管电流且具有逐周期限流功能的电流内环, 具有更好的电压调整率和负载调整率, 稳定性和动态特性也得到明显改善。UC3842是一款单电源供电, 带电流正向补偿, 单路调制输出的高性能固定频率电流型控制集成芯片。本设计采用UC3842 制作一款1 kW 铅酸电池充电器控制板用的辅助电源样机, 并对其进行工作环境下的测试。
1 UC3842 的工作原理
UC3842 内部组成框图如图1所示。其中: 1 脚是内部误差放大器的输出端, 通常此脚与2 脚之间接有反馈网络, 以确定误差放大器的增益和频响。2 脚是反馈电压输入端, 将取样电压加到误差放大器的反相输入端, 再与同相输入端的基准电压( 一般为2.5 V) 进行比较, 产生误差电压。3 脚是电流检测输入端, 与取样电阻配合, 构成过流保护电路。当电源电压异常时, 功率开关管的电流增大, 当取样电阻上的电压超过1 V时, U C3842 就停止输出, 可以有效地保护功率开关管。4 脚外接锯齿波振荡器外部定时电阻与定时电容, 决定振荡频率。5 脚接地。6 脚是输出端, 此脚为图腾柱式输出, 能提供±1A 的峰值电流, 可驱动双极型功率开关管或MOSFET.7 脚接电源, 当供电电压低于16 V 时, UC3842 不工作, 此时耗电在1 mA 以下。输入电压可以通过一个大阻值电阻从高压降压获得。芯片工作后, 输入电压可在10~ 30 V 之间波动, 低于10V 则停止工作。工作时耗电约为15 mA.8 脚是基准电压输出, 可输出精确的5 V 基准电压, 电流可达50mA.由图1( b) 可见, 它主要包括误差放大器、PWM 比较器、PWM 锁存器、振荡器、内部基准电源和欠压锁定等单元。U C3842 的电压调整率可达0.01% , 工作频率为500 kHz.
图1 UC3842 管脚图和内部结构图
2 反激变换器的设计
此次设计的反激变换器是从1 kW 充电器全桥开关电源初级侧高压直流部分取电作为输入电压。反激变换器预定技术指标如下。
输入电压: 240~ 380 V DC; 输出电压: 12 V DC; 输出电流: 2 A; 纹波电压: ±500 mV;输出功率: 25 W;效率: 85% ;开关频率: 65 kHz;占空比:小于40%。
如图2 所示, 电路由主电路、控制电路、启动电路和反馈电路4 部分组成。主电路采用单端反激式拓扑,它是升降压斩波电路演变后加隔离变压器构成的,该电路具有结构简单, 效率高, 输入电压范围宽等优点。工作模式选择在断续模式到临界模式之间。功率开关管选用N??MOSFET STP9NK70ZFP( 700 V, 5 A)。次级整流二极管选用肖特基二极管SR540( 40 V, 5 A) 。
控制电路是整个开关电源的核心, 控制的好坏直接决定了电源整体性能。这个电路采用峰值电流型双环控制,即在电压闭环控制系统中加入峰值电流反馈控制。电路电流环控制采用UC3842 内部电流环,电压外环采用T L431 和光耦PC817 构成的外部误差放大器,误差电压直接送到UC3842 的1 脚。误差电压与电流比较器的同相输入端3 脚经采样电阻采集到初级侧电流进行比较,从而调节输出端脉冲宽度。2 脚接地。R4, C5 是UC3842 的定时元件, 决定UC3842 的工作频率,此设计中R4= 5.6 kΩ ,C5= 3300 pF.当UC3842 的1 脚电压低于1 V 时,输出端将关闭;当3 脚上的电压高于1 V 时,电流限幅电路将开始工作,UC3842 的输出脉冲中断。开关管上波形出现“打嗝”现象,从而可以实现过压、欠压、限流等保护功能。
图2 系统原理图
3 反馈回路参数的计算
反馈电路采用精密稳压源TL431 和线性光耦PC817 构成外部误差电压放大器。并将输出电压和初级侧隔离。如图2 所示, R11、R12 是精密稳压源的外接控制电阻, 决定输出电压的高低, 和T L431 一并组成外部误差放大器。当输出电压Vo 升高时, 取样电压VR 13 也随之升高, 设定电压大于基准电压(TL431 的基准电压为2.5 V) , 使TL431 内的误差放大器的输出电压升高, 致使片内驱动三极管的输出电压降低, 使输出电压Vo 下降, 最后V o 趋于稳定; 反之, 输出电压下降引起设定电压下降, 当输出电压低于设定电压时, 误差放大器的输出电压下降, 片内驱动三极管的输出电压升高, 最终使UC3842 的脚1 的补偿输入电流随之变化, 促使片内对PWM 比较器进行调节, 改变占空比, 达到稳压的目的。
从TL431 技术资料可知, 参考输入端的电流为2 μA, 为了避免此端电流影响分压比和避免噪声的影响, 通常取流过电阻R13 的电流为T L431 参考输入端电流的100 倍以上[ 6] , 所以:
这里选择R13= 10 k Ω,根据TL431 的特性可以计算R12:
其中, TL431 参考输入端电压Uref= 2.5 V。
TL431 的工作电流Ika 范围为1~ 150 mA, 当R9 的电流接近于零时, 必须保证I ka 至少为1 mA, 所以:
其中, 发光二极管的正向压降Uf= 1.2 V。
UC3842 的误差放大器输出电压摆幅0.8 V《 Vo《 6 V, 三极管集射电流I c受发光二极管正向电流If 控制, 通过PC817 的Vce与I c关系曲线( 图3) 可以确定PC817 二极管正向电流I f 。由图3可知, 当PC817 二极管正向电流I f 在7 mA 左右时, 三极管的集射电流I c在7 mA 左右变化, 而且集射电压Vce 在很宽的范围内线性变化, 符合UC3842 的控制要求。
图3 PC817 集射极电压Vce与二极管正向电流If 的关系图
PC817 的电流传输比CTR= 0. 8~ 1. 6, 当I c= 7mA 时, 考虑最坏的情况, 取CT R= 0.8, 此时要求流过发光二极管最大电流:
所以:
其中, Uka为TL431 正常工作时的最低工作电压, Uka = 2.5 V.发光二极管能承受的最大电流为50 mA,TL431 最大电流为150 mA, 故取流过R9 的最大电流为50 mA。
R9 的取值要同时满足式( 5) 和式( 6) , 即162《 R9《 949, 可以选用750Ω 。
4 基于MOS 管最大耐压值的反激变压器设计
由变换器预定技术指标可知变压器初级侧电压Vdcmin= 240 V, Vdcmax= 380 V, 预设效率η= 85%, 工作频率f = 65 kHz, 电源输出功率P out= 25 W。
变压器的输入功率:
根据面积乘积法来确定磁芯型号, 为了留有一定裕量, 选用锰锌铁氧体磁芯EE25/ 20, 电感量系数A L=1 750 nH/ N2 , 初始磁导率μi= 2 300, 有效截面积A e= 42. 2 mm2 。
因为所选的MOS 管的最大耐压值V MOSmax= 700 V.在150 V 裕量条件下所允许的最大反射电压:
最大占空比:
初级电流:
初级最大电感量:
其中, f 是开关频率, Hz.
初次级匝数比:
初级匝数:
其中, 磁感应强度Bw= 0?? 23 T ; 由于此变换器设计在断续工作模式k= 1( 连续模式k= 0.5)。
磁芯气隙:
次级匝数:
辅助绕组匝数:
其中, Va 是辅助绕组电压, V 。
为了减小变压器漏感, 采用夹心式绕法, 初级绕组分N p1 ( 78 T ) 和N p2 ( 78 T) 两部分绕制, 如图4 所示, Np1 绕在骨架最里层, 次级绕组N s绕在N p1和N p2之间, 辅助绕组绕Na 在最外层。
图4 变压器绕制示意图
评论
查看更多