6.3.3 随机颜色和明暗
作为Gamma值进行变换。
6.3.4 多进程调用加速处理
做数据增加时如果样本量本身就不小,则处理起来可能会很耗费时间,所以可以考虑利用多进程并行处理。比如我们的例子中,设定使用场景是输入一个文件夹路径,该文件夹下包含了所有原始的数据样本。用户指定输出的文件夹和打算增加图片的总量。执行程序的时候,通过os.listdir()获取所有文件的路径,然后按照上一章讲过的多进程平均划分样本的办法,把文件尽可能均匀地分给不同进程,进行处理。
6.3.5 代码:图片数据增加小工具
按照前面4个部分的思路和方法,这节来实现这么一个图片数据增加小工具,首先对于一些基础的操作,我们定义在一个叫做image_augmentation.py的文件里:
import numpy as np
import cv2
'''
定义裁剪函数,四个参数分别是:
左上角横坐标x0
左上角纵坐标y0
裁剪宽度w
裁剪高度h
'''
crop_image = lambda img, x0, y0, w, h: img[y0:y0+h, x0:x0+w]
'''
随机裁剪
area_ratio为裁剪画面占原画面的比例
hw_vari是扰动占原高宽比的比例范围
'''
def random_crop(img, area_ratio, hw_vari):
h, w = img.shape[:2]
hw_delta = np.random.uniform(-hw_vari, hw_vari)
hw_mult = 1 + hw_delta
# 下标进行裁剪,宽高必须是正整数
w_crop = int(round(w*np.sqrt(area_ratio*hw_mult)))
# 裁剪宽度不可超过原图可裁剪宽度
if w_crop > w:
w_crop = w
h_crop = int(round(h*np.sqrt(area_ratio/hw_mult)))
if h_crop > h:
h_crop = h
# 随机生成左上角的位置
x0 = np.random.randint(0, w-w_crop+1)
y0 = np.random.randint(0, h-h_crop+1)
return crop_image(img, x0, y0, w_crop, h_crop)
'''
定义旋转函数:
angle是逆时针旋转的角度
crop是个布尔值,表明是否要裁剪去除黑边
'''
def rotate_image(img, angle, crop):
h, w = img.shape[:2]
# 旋转角度的周期是360°
angle %= 360
# 用OpenCV内置函数计算仿射矩阵
M_rotate = cv2.getRotationMatrix2D((w/2, h/2), angle, 1)
# 得到旋转后的图像
img_rotated = cv2.warpAffine(img, M_rotate, (w, h))
# 如果需要裁剪去除黑边
if crop:
# 对于裁剪角度的等效周期是180°
angle_crop = angle % 180
# 并且关于90°对称
if angle_crop > 90:
angle_crop = 180 - angle_crop
# 转化角度为弧度
theta = angle_crop * np.pi / 180.0
# 计算高宽比
hw_ratio = float(h) / float(w)
# 计算裁剪边长系数的分子项
tan_theta = np.tan(theta)
numerator = np.cos(theta) + np.sin(theta) * tan_theta
# 计算分母项中和宽高比相关的项
r = hw_ratio if h > w else 1 / hw_ratio
# 计算分母项
denominator = r * tan_theta + 1
# 计算最终的边长系数
crop_mult = numerator / denominator
# 得到裁剪区域
w_crop = int(round(crop_mult*w))
h_crop = int(round(crop_mult*h))
x0 = int((w-w_crop)/2)
y0 = int((h-h_crop)/2)
img_rotated = crop_image(img_rotated, x0, y0, w_crop, h_crop)
return img_rotated
'''
随机旋转
angle_vari是旋转角度的范围[-angle_vari, angle_vari)
p_crop是要进行去黑边裁剪的比例
'''
def random_rotate(img, angle_vari, p_crop):
angle = np.random.uniform(-angle_vari, angle_vari)
crop = False if np.random.random() > p_crop else True
return rotate_image(img, angle, crop)
'''
定义hsv变换函数:
hue_delta是色调变化比例
sat_delta是饱和度变化比例
val_delta是明度变化比例
'''
def hsv_transform(img, hue_delta, sat_mult, val_mult):
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV).astype(np.float)
img_hsv[:, :, 0] = (img_hsv[:, :, 0] + hue_delta) % 180
img_hsv[:, :, 1] *= sat_mult
img_hsv[:, :, 2] *= val_mult
img_hsv[img_hsv > 255] = 255
return cv2.cvtColor(np.round(img_hsv).astype(np.uint8), cv2.COLOR_HSV2BGR)
'''
随机hsv变换
hue_vari是色调变化比例的范围
sat_vari是饱和度变化比例的范围
val_vari是明度变化比例的范围
'''
def random_hsv_transform(img, hue_vari, sat_vari, val_vari):
hue_delta = np.random.randint(-hue_vari, hue_vari)
sat_mult = 1 + np.random.uniform(-sat_vari, sat_vari)
val_mult = 1 + np.random.uniform(-val_vari, val_vari)
return hsv_transform(img, hue_delta, sat_mult, val_mult)
'''
定义gamma变换函数:
gamma就是Gamma
'''
def gamma_transform(img, gamma):
gamma_table = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)]
gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)
return cv2.LUT(img, gamma_table)
'''
随机gamma变换
gamma_vari是Gamma变化的范围[1/gamma_vari, gamma_vari)
'''
def random_gamma_transform(img, gamma_vari):
log_gamma_vari = np.log(gamma_vari)
alpha = np.random.uniform(-log_gamma_vari, log_gamma_vari)
gamma = np.exp(alpha)
return gamma_transform(img, gamma)
评论
查看更多