软件定义基带也有解决方案 — 足以支持系统规划人员灵活的处理设计投入和功能范围的关系。而收发器问题仍然很关键:如果每一个要覆盖的频带都需要单独的 RF 信号链,那就无法实现低成本。
理想情况下,天线和基带接口之间两个方向的整条信号通路带宽非常大,在整个范围内也是线性的,那么,设计人员只需要设置本地振荡器驱动合成器,调节几个 RF 滤波器参数,获得所需的选择功能,就可以选择要覆盖的任意窗口。这虽然还没有实现,但是也不远了。
Bushehri 仿真了必须要考虑的关键信号通路组件 (图2)。在发送侧,有基带数模转换器 (DAC)、增益可调放大器 (VGA)、可调低通滤波器、辅助锁相环 (PLL)和本地振荡器合成宽带功能,以及第二个 VGA、PA、天线开关等。对于大部分调制方法,合成器的所有组成都必须是同样复制的:一条通路用于同相 (I),一条通路用于正交 (Q)信号。在接收通路上,天线开关后面是 RF 滤波器、LNA、合成器组件,然后是包括了 VGA 的 I 和 Q 通路、低通滤波器,以及 ADC。
在用途不变的设计中,会围绕设计目的来优化这些通路的每一单元。您同样也可以对 SDR 进行优化,旨在使其能够应用在密切相关的频率和调制方案中。但是一个开放 SDR 设计要适应任何应用环境,对 RF 硬件提出了很高的要求。
Bushehri 说,好在 CMOS RF 工艺不断进步,数字辅助模拟和 RF 设计越来越成熟,逐渐能够满足这些要求。他指出,例如最近发布的 Lime 器件 —;LMS7002M 现场可编程RF收发器 IC。该器件是 65 nm RF CMOS 芯片,为 2 x 2 多输入多输出 (MIMO)软件定义收发器提供大部分 50 MHz 至 3.8 GHz 信号通路 (图1)。
图1. 新的现场可配置RF/基带收发器IC支持对载波频率、带宽和滤波器特征参数进行在电路设置。
对每一个模块的需求是明确的。PLL、合成器、RF VGA 和 LNA 必须在整个 3.75 GHz 频带内保持平坦和低噪声,必须有足够的线性度来支持包括多载波工作在内的使用模型。Bushehri 认为,“电路设计非常难”。一方面,即使采用先进的工艺技术,有很好的设计技巧,也无法实现一个宽带组件。芯片使用多个压控振荡器来覆盖频率范围,而发送和接收分别只有一个 PLL 。
工作在基带频率的收发器设计部分也同样非常重要。为支持 Lime 能够达到的应用范围,片内基带模块 — 转换器、VGA 和可编程滤波器,必须支持从 100 kHz 至 108 MHz 的带宽范围。这对于可编程低通滤波器和 12 位数据转换器并非可有可无,特别是您增加了低功耗需求的情况。
一些其他应用场景也扩展了芯片范围。可以旁路大部分功能模块,因此,设计人员如果需要可以替换更专用的外部组件。Lime 还在基带通路的数字端集成了乘法累加器模块,从基带数字硬件中卸载高性能数字滤波器。芯片包括集成 8051 MCU 内核,在控制软件和内部寄存器之间实现抽象功能。
外部组件
宽带可编程收发器解决了很多设计难题。但是还有 RF 天线滤波器、开关和 PA 等未解决的问题。对于这些,最明显的问题是 PA。但是 Bushehri 说,有商用宽带 PA 符合收发器的带宽要求,或者对于更特殊的应用,芯片提供了多路驱动输出,因此,用户可以把多个 PA 调整连接到不同的频带。
还有能够达到 3.8 GHz 的天线开关,其插入损耗和隔离度指标都符合要求。这样,用户面临的主要难题是通过可调RF滤波器获得所需的接收器选择功能。
可编程基带处理器和 DSP 加速功能,可编程 RF 信号通路,仔细的选择外部组件,这些因素组合起来能够以合理的成本,在较小的电路板上实现非常灵活的 SDR。这为系统开发人员带来了很多他们感兴趣的机会。
至少,技术进步使得生产商能够通过一个硬件设计,提供几种型号产品服务于很多无线市场 — 在各类 IoT 中。他们更感兴趣的是,系统开发人员可以开发一个机箱 — 微微小区或者空白收发器,迅速对其初始化,适应各种已知的现场环境。
另一方面,技术不断进步,认知无线电完成所有功能 — 能够扫描、解释并响应宽谱信号,发展中国家的应急响应系统和服务提供商也用得起认知无线电,这些国家可能完全没有基础设施,资源非常昂贵,但是要求远程位置服务。这类功能可能会从根本上改变发展中国家的游戏规则。
而且,较低的价格点也将为认知无线电打开广阔的发烧友市场。这不但使设计人员更熟悉概念,还会促进从业余无线电直至嵌入式计算和机器人等开放系统的创新,改进已有的技术。认知无线电开放社区虽然才刚刚兴起,但是潜力巨大。
评论
查看更多