其中, PN(n)是伪噪声序列,RAUTO是序列PN(n)的自相关,n是PN码的长度,而τ是PN(n)时移的延时因数。
信号的时移是非线性的;自相关的计算采用循环时移方法。自相关是延时(τ)的一个函数。
要正确地译码,收到的信号应该与PN码保持相位同步。接收机是依据相关器的输出来维持同步。自相关应有一个高的峰值最大值(图5),才能有完美的同步;就是说,τ=0、N、2N等等。否则,接收机就有很大的概率错误地锁相到收到的序列上。如两个波形要有最小的失配,则自相关应为最低。
最低自相关亦增强了对多径干扰的抑制能力。一旦接收机被锁相到接收信号上,它就不会主动地去响应所最低互相关。
互相关类似于自相关,但量度的是两个独立信号之间的相似性,数据表达式见式(6):
其中, PNi(n)是一个伪噪声序列;PNj(n)是另一个伪噪声序列,且与PNi(n)完全独立;RCROSS是序列PNi(n)与PNj(n)的互相关;n是PN码的长度,而τ是延时因数。
互相关亦称为滑动点积(sliding-dot product)。如果两个PN序列之间的互相关高,则接收机将无法区分出它们的译码信号,因为相关器对两个信号都有足够高的输出。这样,接收机就可能失去“选择性衰减”能力,从而使干扰作用占据上风。为尽量减少其它DSSS源的干扰,理想情况下,不同的PN码应是正交的,即,它们应该表现为零互相关。
因为PN码不会真正正交,因此要选择最小可能的互相关,以减少其作用。
PN码的选择
通常, 较好的方法是选择能提供高处理增益的PN码,但较高增益也需要更大的带宽。较高增益还有另一个缺点,那就是一般需要长的PN码,这会直接影响系统的有效数据速率。另外,要确定一个长序列的PN码资格,也相对困难些,因为这些特性的评估有着更高的处理开销。由于这些因素,选择一个合适的PN码是一个冗长乏味的工作。
为简化这个过程,可选择一些标准码作为候选的PN码,例如黄金码(Gold code)、m序列,以及威尔士码(Walsh code)。这些码都已具备了需要的特性,例如,m序列有低的自相关,而黄金码则有低的互相关特性。
选择PN码的一种常见方法是:从这些标准码中选择出一些序列,并根据需要的特性,对它们做分别评估(一般只做自相关和互相关)。按照评估结果与应用需求,对这些序列打分排名,然后用排名来决定某个序列是否适合用做PN码。
一旦选定了合适的扩频方法以及扩频序列,下一个重要步骤就是在发射机及相应接收机之间建立同步。每个异步数字通信都要求接收机采用一种与发射机同步的机制;否则,接收机就不可能译码收到的信号。两种扩频方法本质上都是异步的,因此扩频系统必须对DSSS同步PN码,而对FHSS则是同步跳频模式。
同步的建立分两个阶段:采样与跟踪。在采样阶段,接收机对收到信号做检测,看它是否来自需要的源。在跟踪阶段,接收机做精细同步,采用某种锁定机制,跟踪所接收信号的相位、频率(或两者同时跟踪)。
DSSS的同步
采用DSSS时,如果相关器输出小于一个最低阈值,则它会将收到的序列当作背景噪声而丢弃。由于一个PN码的自相关为最小,因此,如果收到的序列与本地生成PN码之间没有相位同步,则相关器输出非常低(理想状态为0)。如未采取具体的同步措施,接收机就不可能可靠地译码收到的信号。
由于PN码实现了DSSS中的信号扩展,发射机的载波频率保持不变,因此不需要发射机与接收机之间的频率同步。
DSSS的采样
为获得完美同步,接收到序列与本地生成序列之间有一个峰值最大相关度。接收机采用“串行”或“并行”搜索方法,就可以找到一个相关度超出某个预设阈值的相位。
用串行搜索时,一个监控电路会不断检查相关器的输出。如果输出未达到某个阈值,则搜索控制块便移动所生成PN码的相位(图6)。这个过程不断重复,直到相关器输出达到阈值时,采样结束。这一结构形成了一个反馈回路,被称为滑动相关器。
串行搜索可能有一个缺点,那就是采样时间长。因此,有些设计会使用并行搜索。
评论
查看更多