您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子元器件>电池>

热电池阴极电极材料 - 军用热电池国外的发展

2018年02月07日 10:00 网络整理 作者: 用户评论(0

热电池阴极电极材料

在锂系热电池中,优良的阴极活性物质一般需要具有以下特点:电极电位高,相对于锂电位最好大于3V;具有高的热稳定性;与电解质不发生反应;具有电子导电性,能够大电流放电;生成的反应产物能够导电或能溶人电解质,减小内阻。锂系热电池的阴极材料通常采用电位较正的金属硫化物、氧化物以及氯化物。

(1) 硫化物阴极材料

过渡族金属硫化物是一类很好的热电池阴极材料,通常采用电位较正的金属硫化物或盐类。用它取代硫做阴极材料,可解决高温下硫蒸汽的逸散问题,大大降低可溶于电解质的多硫化物的形成。FeS是目前应用最广泛的与锂合金阳极匹配的热电池阴极材料。二硫化铁有人工合成的,也有从天然矿石中提取的,锂系热电池使用的二硫化铁主要来源于天然产出的二硫化铁。研究表明,FeS阴极材料可直接从黄铁矿中加工得到,价格便宜,电性能稳定。但是FeS,在高于550℃时发生热分解,生成硫蒸汽与阳极锂合金直接化学反应产生大量的热量,使热电池热失控直至完全失效。另外,在电池激活瞬间,单体电池会产生0.2V或更高的电压脉冲即瞬间电压尖峰,使电压平稳性下降,缩短电池的工作寿命。为消除电压尖峰,解决FeS:的热稳定性问题,广大学者做了很多方面的工作。目前最有效的常规方法是采用Li:O等锂化剂对FeS:进行锂化处理,从而大大消除电池的初始电压尖峰并提高电池寿命终结时的脉冲性能。此外,采用合成纳米结构的FeS:作为阴极也为FeS,的应用指出了新的发展方向。相较于资源丰富的FeS,CoS粉末只能采用人工合成的方法。人工合成CoS粉末的方法有:晶种诱导水热合成CoS粉体、溶剂热法合成CoS纳米粉体、水热法制备CoS:空心微球以及高温硫化法。人工合成CoS,粉末大部分的颗粒都成近球形,颗粒表面比较疏松成发达的多孔状结构。与表面光滑平坦的FeS晶体相比,CoS的结构大大提高了正极材料的比表面积,从而可提高正极工作电流密度、正极材料的利用率。因此多孔网状的CoS正极材料更适合于发展高比功率和比能量的热电池,是能代替二硫化铁的理想阴极材料。

(2) 氧化物阴极材料

由于存在严重的热分解,二硫化铁是比较理想的短寿命阴极材料。Clark用溴化锂对VO、VO进行锂化处理制得锂化的氧化钒(LVO),作为热电池的阴极材料,与二硫化铁相比具有较高的电压和更好的热稳定性。LVO优点如下:混合物的热稳定性较好;电极电位很正,相对锂为2.8V;化学稳定性好,若把它与一定比例的FeS混合作为阴极,则除保持原有的优点外,还可显著提高热电池的后期放电效果。

(3) 氯化物阴极材料

金属氯化物(特别是氯化镍)是可替代二硫化铁的较为理想的阴极材料之一,具有理论容量高、放电电流密度大、电极电位正等特点。以高温处理氯化镍为正极材料的热电池,氯化镍热电池在放电后期,由于氯化镍与全锂电解质在高温时发生相互熔浸,电池的电解质材料流溢出电堆现象严重。研究表明,在氯化镍热电池中,电解质不宜选用二元电解质,锂硅合金不适合做负极。以氯化镍为正极,Li.B合金为负极,电解质选用全锂j元电解质制备电池进行放电试验,研究表明样品电池放电电压曲线平滑、无极化现象、无微短路现象;电池激活时间1.6S,样品电池的比能量达到84Wh/kg(这是热电池中较高的水平)。电池正、负极利用率都达到较高的水平,在进一步改进电池粉量配比后,电池的比能量仍有提高的可能,而且激活时间也有望缩短。

熔融硝酸盐电解质

近年来,国外的一些热电池实验室(SNL、SAFTAmerica公司)采用熔融的硝酸盐应用于锂体系热电池电解质。由于该体系的低温工作区间、单体电压高、比能量高等优点,作为热电池电解质其应用备受关注。热电池的熔融盐电解质具有水溶液电解质所无法比拟的优越性:非流动性;高电导率及离子迁移速度大,允许大功率大电流放电;分解电压高,可以使用与水反应的超低电位金属及其合金作阳极,从而使电池电压高,比能量大;活性物质利用率高,电化学极化和浓差极化都很小。传统热电池电解质可选用碱金属和碱土金属的氟化物、氯化物、溴化物以及它们的低共熔点混合物。但这些电解质的熔点相对较高,电池的工作温度基本都在300~500℃。据国外的文献报道,国外的一些热电池实验室采用熔融的硝酸盐作为锂体系热电池电解质,电池工作温度范围低(150~300℃ );锂体系阳极能够与之兼容;组合电池采用高电压阴极与锂合金配对,电池的单体电压和比能量较传统热电池明显提高。表1是传统锂系热电池电解质体系特性,表2是常用的熔融硝酸盐体系一些特性。可见硝酸盐体系的熔点均小于300℃,且有较好的电导率,因此该体系应用于热电池中,体系温度较传统锂系热电池降低至少100℃,该体系与传统锂系热电池电解质都具有良好的导电性。

军用热电池国外的发展

保温材料

要使热电池正常工作,必须维持在一定的温度范围内。通常在电池堆体的周围使用一定的保温材料来达到在较长时间内维持一定的温度的目的。保温材料性能好坏对热电池的性能(特别是工作时间)会产生很大的影响。

Min-k保温材料主要以气相SiO或SiO气凝胶粉末为主体,添加TiO2等作为遮光剂,加入一定量的纤维作为增强剂,经过混合后压制而成。气凝胶是一种新型的轻质纳米多孔性非晶固态材料,其比表面高达1000m2/g、孔率达80%~99.8%,孔洞的典型尺寸为1~100hi/1。它被认为是固体中热导率很低的材料。这是因为:气凝胶的纤细纳米多孔性结构能有效地限制局域激发的传播,其固态热导率比相应的玻璃材料低2~3数量级;气凝胶的典型孔洞尺寸在几纳米到几十纳米之间,小于常压下空气分子的平均自由程,因此气体热导率很低;掺杂遮光剂的气凝胶能使辐射热传导在一定厚度内被有效地吸收,即辐射热导率也很低。在常温常压下,气凝胶的导热系数可达O.015W/(m·K)。即使在527℃的温度下,其导热系数也只有0.038W/(m-K)。气凝胶虽然有较好的保温性能,但机械强度较差。为了提高强度,可以在制备的过程中加入纤维进行增强。真空绝热体采用不锈钢制成的双层夹套壳体,夹套内抽真空,其保温原理和热水瓶相同。若在真空室放人填充材料,如铝箔、玻璃纤维等,保温性能将大大提高。

热电池发展展望

自20世纪70年代锂合金/二硫化铁电池问世以来,世界上几个主要军事强国对该种热电池的兴趣倍增,80年代得到非常迅速的发展。可以预见,

锂合金/二硫化铁热电池将全面替代目前还在使用的几个比较落后的热电池体系。21世纪是锂合金/二硫化铁电池的全盛时期,随着材料特别是新型保温材料的发展,到那时长寿命热电池组的寿命将超过2h,功率为几千瓦级热电池组可能问世。稳态放电电流密度可能达到8~10A/cm2,脉冲放电电流密度可能超过50A/cm2,电池组的性能得到进一步提高,比功率大大超过目前水平。

随着热电池研究的不断深化,热电池必将在武器应用方面不断发展,在军事上占有越来越重要的地位

非常好我支持^.^

(9) 100%

不好我反对

(0) 0%

( 发表人:李倩 )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!