什么是燃料电池
燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。由于燃料电池是通过电化学反应把燃料的化学能中的吉布斯自由能部分转换成电能,不受卡诺循环效应的限制,因此效率高;另外,燃料电池用燃料和氧气作为同时没有机械传动部件,故没有噪原料,排放出的有害气体极少;声污染。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术。
燃料电池的原理
燃料电池是一种能量转化装置,它是按电化学原理,即原电池工作原理,等温的把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。燃料电池主要由四部分组成,即阳极、阴极、电解质和外部电路。燃料气和氧化气分别由燃料电池的阳极和阴极通入。燃料气在阳极上放出电子,电子经外电路传导到阴极并与氧化气结合生成离子。离子在电场作用下,通过电解质迁移到阳极上,与燃料气反应,构成回路,产生电流。同时,由于本身的电化学反应以及电池的内阻,燃料电池还会产生一定的热量。电池的阴、阳两极除传导电子外,也作为氧化还原反应的催化剂。当燃料为碳氢化合物时,阳极要求有更高的催化活性。阴、阳两极通常为多孔结构,以便于反应气体的通入和产物排出。电解质起传递离子和分离燃料气、氧化气的作用。为阻挡两种气体混合导致电池内短路,电解质通常为致密结构。
燃料电池的组成结构
燃料电池的主要构成组件为:电极(Electrode)、电解质隔膜(ElectrolyteMembrane)与集电器(CurrentCollector)等。
1、电极
燃料电池的电极是燃料发生氧化反应与氧化剂发生还原反应的电化学反应场所,其性能的好坏关键在于触媒的性能、电极的材料与电极的制程等。
电极主要可分为两部分,其一为阳极(Anode),另一为阴极(Cathode),厚度一般为200-500mm;其结构与一般电池之平板电极不同之处,在于燃料电池的电极为多孔结构,所以设计成多孔结构的主要原因是燃料电池所使用的燃料及氧化剂大多为气体(例如氧气、氢气等),而气体在电解质中的溶解度并不高,为了提高燃料电池的实际工作电流密度与降低极化作用,故发展出多孔结构的的电极,以增加参与反应的电极表面积,而此也是燃料电池当初所以能从理论研究阶段步入实用化阶段的重要关键原因之一。
目前高温燃料电池之电极主要是以触媒材料制成,例如固态氧化物燃料电池(简称SOFC)的Y2O3-stabilized-ZrO2(简称YSZ)及熔融碳酸盐燃料电池(简称MCFC)的氧化镍电极等,而低温燃料电池则主要是由气体扩散层支撑一薄层触媒材料而构成,例如磷酸燃料电池(简称PAFC)与质子交换膜燃料电池(简称PEMFC)的白金电极等。
2、电解质隔膜
电解质隔膜的主要功能在分隔氧化剂与还原剂,并传导离子,故电解质隔膜越薄越好,但亦需顾及强度,就现阶段的技术而言,其一般厚度约在数十毫米至数百毫米;至于材质,目前主要朝两个发展方向,其一是先以石棉(Asbestos)膜、碳化硅SiC膜、铝酸锂(LiAlO3)膜等绝缘材料制成多孔隔膜,再浸入熔融锂-钾碳酸盐、氢氧化钾与磷酸等中,使其附着在隔膜孔内,另一则是采用全氟磺酸树脂(例如PEMFC)及YSZ(例如SOFC)。
3、集电器
集电器又称作双极板(BipolarPlate),具有收集电流、分隔氧化剂与还原剂、疏导反应气体等之功用,集电器的性能主要取决于其材料特性、流场设计及其加工技术。
燃料电池的优点
(1)燃料电池是通过燃料与氧化剂的化学反应直接将化学能转变成电能,没有中间的能量转化环节,因而这种发电方式能量转化效率可高达50%。还可回收发电过程中产生的余热。若把产生的余热再用于发电或供暖、供水等,综合考虑效率能达到80%。
(2)燃料电池发电过程,机械部件很少,噪声低;化学反应的排出物主要是水蒸气等洁净的气体,不会污染环境。在环境污染日趋严重的今天,燃料电池的这个优点尤其可贵。
(3)燃料电池中所使用的燃料,既可是天然气、煤气和液化燃料,也可以是甲醇、沼气乃至木柴。可根据不同地区的具体情况,选用不同的燃料用于燃料电池的发电系统,这可广开燃料来源途径,缓解能源紧张。
(4)燃料电池从中断运转到再启动,输电能力回升速度快,并可在短时间内增加和减少电力输出。因此将这种发电系统与其他输电网连接使用最为有利,可随时补充电网在用电高峰时所需的部分电能。
(5)燃料电池本身为一个“组合体”,所用部件可事先在工厂生产,然后组装;它的体积小,拆装都很方便,这可节省建电站的时间。