什么是燃料电池
燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。由于燃料电池是通过电化学反应把燃料的化学能中的吉布斯自由能部分转换成电能,不受卡诺循环效应的限制,因此效率高;另外,燃料电池用燃料和氧气作为同时没有机械传动部件,故没有噪原料,排放出的有害气体极少;声污染。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术。
燃料电池的原理
燃料电池是一种能量转化装置,它是按电化学原理,即原电池工作原理,等温的把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。燃料电池主要由四部分组成,即阳极、阴极、电解质和外部电路。燃料气和氧化气分别由燃料电池的阳极和阴极通入。燃料气在阳极上放出电子,电子经外电路传导到阴极并与氧化气结合生成离子。离子在电场作用下,通过电解质迁移到阳极上,与燃料气反应,构成回路,产生电流。同时,由于本身的电化学反应以及电池的内阻,燃料电池还会产生一定的热量。电池的阴、阳两极除传导电子外,也作为氧化还原反应的催化剂。当燃料为碳氢化合物时,阳极要求有更高的催化活性。阴、阳两极通常为多孔结构,以便于反应气体的通入和产物排出。电解质起传递离子和分离燃料气、氧化气的作用。为阻挡两种气体混合导致电池内短路,电解质通常为致密结构。
燃料电池的组成结构
燃料电池的主要构成组件为:电极(Electrode)、电解质隔膜(ElectrolyteMembrane)与集电器(CurrentCollector)等。
1、电极
燃料电池的电极是燃料发生氧化反应与氧化剂发生还原反应的电化学反应场所,其性能的好坏关键在于触媒的性能、电极的材料与电极的制程等。
电极主要可分为两部分,其一为阳极(Anode),另一为阴极(Cathode),厚度一般为200-500mm;其结构与一般电池之平板电极不同之处,在于燃料电池的电极为多孔结构,所以设计成多孔结构的主要原因是燃料电池所使用的燃料及氧化剂大多为气体(例如氧气、氢气等),而气体在电解质中的溶解度并不高,为了提高燃料电池的实际工作电流密度与降低极化作用,故发展出多孔结构的的电极,以增加参与反应的电极表面积,而此也是燃料电池当初所以能从理论研究阶段步入实用化阶段的重要关键原因之一。
目前高温燃料电池之电极主要是以触媒材料制成,例如固态氧化物燃料电池(简称SOFC)的Y2O3-stabilized-ZrO2(简称YSZ)及熔融碳酸盐燃料电池(简称MCFC)的氧化镍电极等,而低温燃料电池则主要是由气体扩散层支撑一薄层触媒材料而构成,例如磷酸燃料电池(简称PAFC)与质子交换膜燃料电池(简称PEMFC)的白金电极等。
2、电解质隔膜
电解质隔膜的主要功能在分隔氧化剂与还原剂,并传导离子,故电解质隔膜越薄越好,但亦需顾及强度,就现阶段的技术而言,其一般厚度约在数十毫米至数百毫米;至于材质,目前主要朝两个发展方向,其一是先以石棉(Asbestos)膜、碳化硅SiC膜、铝酸锂(LiAlO3)膜等绝缘材料制成多孔隔膜,再浸入熔融锂-钾碳酸盐、氢氧化钾与磷酸等中,使其附着在隔膜孔内,另一则是采用全氟磺酸树脂(例如PEMFC)及YSZ(例如SOFC)。
3、集电器
集电器又称作双极板(BipolarPlate),具有收集电流、分隔氧化剂与还原剂、疏导反应气体等之功用,集电器的性能主要取决于其材料特性、流场设计及其加工技术。
燃料电池的优点
(1)燃料电池是通过燃料与氧化剂的化学反应直接将化学能转变成电能,没有中间的能量转化环节,因而这种发电方式能量转化效率可高达50%。还可回收发电过程中产生的余热。若把产生的余热再用于发电或供暖、供水等,综合考虑效率能达到80%。
(2)燃料电池发电过程,机械部件很少,噪声低;化学反应的排出物主要是水蒸气等洁净的气体,不会污染环境。在环境污染日趋严重的今天,燃料电池的这个优点尤其可贵。
(3)燃料电池中所使用的燃料,既可是天然气、煤气和液化燃料,也可以是甲醇、沼气乃至木柴。可根据不同地区的具体情况,选用不同的燃料用于燃料电池的发电系统,这可广开燃料来源途径,缓解能源紧张。
(4)燃料电池从中断运转到再启动,输电能力回升速度快,并可在短时间内增加和减少电力输出。因此将这种发电系统与其他输电网连接使用最为有利,可随时补充电网在用电高峰时所需的部分电能。
(5)燃料电池本身为一个“组合体”,所用部件可事先在工厂生产,然后组装;它的体积小,拆装都很方便,这可节省建电站的时间。
燃料电池是新能源的希望吗
相比于纯电池车,燃料电池车也可以像传统燃油车一样,在加气站迅速加满氢气燃料而不需要慢慢地等电池充满;同时,只要气罐的容积足够大,耐压标准足够高,燃料电池储满高压氢气一口气跑500公里以上都不是问题;此外,相比于电池车在达到使用年限后,在眼下还没有找到出路的电池回收问题,燃料电池技术却可以保证整个系统的回收再利用。 不过、既然燃料电池有这么多的好处,那为什么没有大行其道呢?这其中一定有缘由!
1、现阶段燃料电池系统技术复杂,体积较大
在燃料电池中,质子交换膜和基板是燃料电池的两个核心组成部分(这两个零部件直接决定了燃料电池的寿命),由于燃料氢气需要依靠这两个部分来发生化学反应,生产出驱动电机的“电子”,这就意味着燃料电池从开始工作到顺利生产出“电”来,中间存在一个时间迟滞(目前国产的燃料电池,可以把这个滞后控制在10秒左右),考虑到车辆不可能在踩下油门踏板10秒钟之后才起步,所以燃料电池车必须像电动车一样,搭载一块相对小一点儿的储能电池。
2、燃料电池的制造成本在逐步降低,但依然很高
由于燃料电池对贵重金属(铂金)的需求较高,且国内能生产燃料电池两个核心组成部分的企业很少(国内只有山东东岳实现了质子交换膜的关键技术突破,国际上有3M和杜邦等公司可以生产高标准的膜产品),所以从国际和国内两个角度来讲,现阶段燃料电池的制造成本降不下来,直接导致燃料电池的发电成本也居高不下。
3、眼下国内缺少适宜乘用车使用的燃料电池技术
对燃料电池来说,根据基板材质的不同,可以分为几个不同的种类。
碳基复合板——以碳为主要材质做成的基板,此类基板组成的燃料电池(下图)有稳定、导电导热性好的特点,但由于碳基板相对较厚(为保证强度),所以相应的燃料电池组尺寸也同步增大,这就导致了能量密度的降低,使这类基板组成的燃料电池系统,只能用于一些对体积要求不高的商用车(客车或货车)。
金属复合板——以金属材质构构成的基板,具有强度高,单片薄和低温启动速度快的特点,这就允许燃料电池组更易实现轻量化,更高的能量密度(比碳基板提高至少50%)和反应速度。但是由于金属复合板在燃料电池的工作环境中不耐腐蚀,寿命短,发热稳定性不好,工作时表面电阻大,所以以金属复合板构成的燃料电池系统对技术的要求更高。
钛板——用金属钛制成的燃料电池基板,融合了以上碳复合基板和金属复合板燃料电池的诸多优点,但唯独在成本这一方面上做不到喜大普奔,所以用钛板打造的燃料电池系统,只能用在不差钱的行业上,比如驱动一架造价不菲的无人机(绝非大疆之流)。
眼下,丰田和本田给自己燃料电池车使用的燃料电池组均属于金属复合板,而国内此类燃料电池系统的生产工艺、成本控制和性能方面,与这两个日系品牌的产品还存在不小的差距,所以目前国内相对较为成熟的燃料电池系统(碳基复合板为主),都只能应用在一些大型商用车上,而少有给乘用车使用的燃料电池组。不过车云菌在此次燃料电池会议上得知,国内像氢镤这样在燃料电池领域居于技术前沿的公司,有望在未来几年生产出具有竞争力的金属复合板燃料电池。
4、氢气的制取和运输都是难题
任何一种能源能被社会广泛接受,从人性的层面来说,都是“产业链成本”的胜利,化石燃料能大行其道,是其在勘探、开采、提炼、运输、消费和使用层面的综合成本达到了“业内最低”,因此,想讨论燃料电池的可行性,就必须系统性的讨论它的系统成本。
虽然燃料电池在使用层面的环保成本很低,但燃料氢气的制取却是横亘在我们眼前的一座大山。虽然我们可以通过煤制氢、化工制氢、水电和风电制氢这些“边际办法”来获得一部分氢气,可一旦燃料电池系统(车)在社会中的使用量达到一定量级,大工业化制氢是唯一的解决办法。可一旦我们为了氢气而制氢,那么相比于化石燃料来说,燃料电池产业的系统成本是不是还具有优势,我们就不得而知了。
此外,氢气的运输和保存,是个必须要认真研究的问题。就一辆氢燃料电池车来说,眼下我国对氢气罐制定的国标是35兆帕标准,这个压力标准对燃料电池组来说并不能帮助后者获得具有竞争力的续航能力(能量密度),但是更进一步的70兆帕国标,目前还是空白。
此外,氢气是一种非常特别的气体,第一是因为它的易燃性:在空气中,只要氢气的体积浓度介于4.1%~74.2%之间,这时就可能会发生爆炸,所以氢气在运输和加注过程中,对泄漏的控制肯定要比汽油严格得多,这就意味着加氢站不能像充电桩那样建好就不用管了,而必须有专人照看和维护。
5、国内燃料电池车的未来在哪里?
说句不大客气的话,如果没有政策补贴存在的话,国内的燃料电池研究和电动车研发,可能都要晚很多年才会出现。
根据眼下政策补贴策略和国内燃料电池技术的特点,若干年内国内推进燃料电池商用车的示范应用还是可行的,因为一来这样燃料电池汽车的生态闭环可以限定在一个很小的范围内“试运行”,政策补贴在这个小圈子内也可以发挥最大的效果,且预料之外的特殊情况比较少。
从长久来看,燃料电池乘用车产业,将会遇到比电动车更为直接的“先有鸡还是先有蛋”的问题——燃料电池车的加氢设备相比于汽油车的加油设备和电动车的充电桩来说,对操作人员技术水平和设备工艺的要求都高,因此加氢站的运营商更乐意看到燃料电池车达到一定数量之后才肯投入,而对于燃料电池车的消费者来说,肯定是周围生活区域内存在可以使用的加氢站之后,才会考虑买燃料电池车。
因此,想解决这个“先有站还是先有车”的两难问题,在未来行政手段和产业链的市场运作是必不可少的两把推手;当然,贯穿其中的,必须是越来越低的燃料电池全产业链成本(包含制氢和使用成本)。只有不断降低的综合成本,才有可能让这个产业在传统化石燃料和纯电动技术中间,稳固住自己的阵地。