(1) 产品内部结构的变化直接影响到EMC 性能。如:PCB 或DCB 的排版设计,通常需要通过几次调整,如改变输入输出之间的走线位置、元件的摆放位置等,才能达到最佳状态;
(2) 所有测试的光耦中,VISHAY 光耦的性能比较突出,其多数光耦的Burst 测试可以达到4kV。其它厂家的光耦较少能达到4kV(关于这一点,主要取决于光耦内部的结构);
(3) 压敏电阻RV 对Burst 性能影响不明显,而对Surge 性能影响极大;因此在有较大浪涌电压冲击的场合,应加上R V 。R V 的大小要视可控硅的阻断电压高低来决定;
(4) 从试验数据可以看出,在耐电脉冲群冲击方面,光耦对继电器的影响较大(见结论的第2 点),不同的光耦其耐冲击性能不一样;而在耐Surge 时,可控硅对继电器的影响最大(较差的可控硅如dv/dt 太低等,将被击穿);
(5) 对于不同的组合,将有不同的EMC 能力。如果用EMC 较好的光耦配较差的可控硅,将造成较差的E M C抗扰能力。反之可得出同样结果;
(6) 不带RC 时,绝大多数的光耦的抵抗群脉冲的能力都低于500V;基本上无法达到CE 的标准。为此,设计人员必须改变电路结构和元件参数,方可满足客户的要求和C E 标准。实际应用证明,电容C 的介质损耗角和其温度特性对吸收电路影响较大。电阻R 除它的功率和热稳定参数外,它的阻值对E M C 的性能影响也较大。通常C选用10 — 22nf,而R 通常用10 — 100 欧姆;
(7)光耦阻断电压的高低与它的抵抗群脉冲的能力的强弱没有必然的联系。但可控硅阻断电压的高低与抵抗浪涌电压的能力的强弱有较大关系。
6 存在的问题
由于光耦耐脉冲冲击的电性能不一,S S R 继电器接入电机正反转线路,以及干扰电压的存在( 可用示波器观看) ,S S R 会误导通,以至烧毁。过零的继电器也同样如此。理论上干扰电压是反电势和负载电压之和的根号2 倍,但实际上干扰电压可达到负载电压的3-5 倍,有时达到10 倍。原因是电路的分布参数产生了LC 并联谐振。虽然谐振电压的能量较小,高峰时持续的时间只有微秒级,但会使SSR 误导通,即光耦失效。因此,尚待进一步探讨。