您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子元器件>晶闸管>

氧化镓制造功率元件,比SiC更出色? - 全文

2012年04月18日 08:47 本站整理 作者:秩名 用户评论(0

  氧化镓制造功率元件,比SiC更出色?

  与SiC和GaN相比,β-Ga2O3有望以低成本制造出高耐压且低损失的功率半导体元件,因而引起了极大关注。契机源于日本信息通信研究机构等的研究小组开发出的β-Ga2O3晶体管。下面请这些研究小组的技术人员,以论文形式介绍一下β-Ga2O3的特点、研发成果以及今后的发展。

  我们一直在致力于利用氧化镓(Ga2O3)的功率半导体元件(以下简称功率元件)的研发。Ga2O3与作为新一代功率半导体材料推进开发的SiC和GaN相比,有望以低成本制造出高耐压且低损失的功率元件。其原因在于材料特性出色,比如带隙比SiC及GaN大,而且还可利用能够高品质且低成本制造单结晶的“溶液生长法”。

  在我们瞄准的功率元件应用中,使用Ga2O3试制了“MESFET”(metal-semiconductorfield effect transistor,金属半导体场效应晶体管)。尽管是未形成保护膜(钝化膜)的非常简单的构造,但试制品显示出了耐压高、泄漏电流小的特性。而使用SiC及GaN来制造相同构造的元件时,要想实现像试制品这样的特性,则是非常难的。

  虽然研发尚处于初期阶段,但我们认为Ga2O3的潜力巨大。本论文将介绍Ga2O3在功率元件用途方面的使用价值、研发成果,以及今后的目标等。

  比SiC及GaN更为出色的性能

  Ga2O3是金属镓的氧化物,同时也是一种半导体化合物。其结晶形态截至目前(2012年2月)已确认有α、β、γ、δ、ε五种,其中,β结构最稳定。与Ga2O3的结晶生长及物性相关的研究报告大部分都使用β结构。我们也使用β结构展开了研发。

  β-Ga2O3具备名为“β-gallia”的单结晶构造。β-Ga2O3的带隙很大,达到4.8~4.9eV,这一数值为Si的4倍多,而且也超过了SiC的3.3eV 及GaN的3.4eV(表1)。一般情况下,带隙大的话,击穿电场强度也会很大(图1)。β-Ga2O3的击穿电场强度估计为8MV/cm左右,达到Si的20多倍,相当于SiC及GaN的2倍以上。

  

  

  图1:击穿电场强度大

  带隙越大,击穿电场强度就越大。β-Ga2O3的击穿电场强度为推测值。

  β-Ga2O3在显示出出色的物性参数的同时,也有一些不如SiC及GaN的方面,这就是迁移率和导热率低,以及难以制造p型半导体。不过,我们认为这些方面对功率元件的特性不会有太大的影响。

  之所以说迁移率低不会有太大问题,是因为功率元件的性能很大程度上取决于击穿电场强度。就β-Ga2O3而言,作为低损失性指标的“巴利加优值(Baliga’s figure of merit)”与击穿电场强度的3次方成正比、与迁移率的1次方成正比。因此,巴加利优值较大,是SiC的约10倍、GaN的约4倍。

  一般情况下,导热率低的话,很难使功率元件在高温下工作。不过,工作温度再高也不过200~250℃,因此实际使用时不会有问题。而且封装有功率元件的模块及电源电路等使用的封装材料、布线、焊锡、密封树脂等周边构件的耐热温度最高也不过200~250℃程度。因此,功率元件的工作温度也必须要控制在这一水平之下。

  另外,关于难以制造p型半导体这一点,使用β-Ga2O3来制作功率元件时,可以将其用作N型半导体,因此也不是什么问题。而且,通过掺杂Sn及Si等施主杂质,可在电子浓度为1016~1019cm-3的大范围内对N型传导特性进行控制(图2)。

N型传导特性的控制范围大  

  图2:N型传导特性的控制范围大

  使用β-Ga2O3时,可在大范围内控制N型传导性。实际上,通过掺杂施主杂质,可在1016~1019cm-3范围内调整电子密度。

  导通电阻仅为SiC的1/10

  β-Ga2O3由于巴利加优值较高,因此理论上来说,在制造相同耐压的单极功率元件时,元件的导通电阻比采用SiC及GaN低很多(图3)。降低导通电阻有利于减少电源电路在导通时的电力损失。

  导通电阻比SiC及GaN小

  图3:导通电阻比SiC及GaN小

  在相同耐压下比较时,β-Ga2O3制造的单极元件,其导通电阻理论上可降至使用SiC时的1/10、使用GaN时的1/3。图中的直线与巴加利优值的倒数相等。直线位置越接近右下方,制成的功率元件性能就越出色。

  使用β-Ga2O3的功率元件不仅能够降低导通时的损失,而且还可降低开关时的损失。因为从理论上说,在耐压1kV以上的高耐压用途方面,可以使用单极元件。

  比如,设有利用保护膜来减轻电场向栅极集中的“场板”的单极晶体管(MOSFET),其耐压可达到3k~4kV。

  而使用Si的话在耐压为1kV时就必须使用双极元件,即便使用耐压公认较高的SiC,在耐压为4kV时也必须使用双极元件。双极元件以电子和空穴为载流子,因此与只以电子为载流子的单极元件相比,在导通及截止的开关动作时,沟道内的载流子的产生和消失会耗费时间,损失容易变大。

  比如Si,在耐压1kV以上的用途方面通常是晶体管使用IGBT二极管使用PIN二极管。

  SiC的话,耐压4kV以下用途时晶体管可使用MOSFET等单极元件,二极管可使用肖特基势垒二极管(SBD)等单极元件。但在耐压4kV以上时导通电阻超过10mΩcm2,单极元件不具备实用性。因此必须使用双极元件。

非常好我支持^.^

(21) 95.5%

不好我反对

(1) 4.5%

( 发表人:电子大兵 )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!