单片机具有可靠性高、功耗低、扩展灵活、体积小、价格低和使用方便等优点,广泛应用于仪器仪表、专用设备智能化管理及过程控制等领域,有效地提高了控制质量与经济效益。本设计选用TI公司的16位超低功耗混合型微处理器MSP430F149(见图3)作为核心控制器,它的主要特点是:
(1)低电压、超低功耗
该单片机的电源电压采用1.8V~3.6V低电压,RAM数据保持方式下耗电仅0.1μA,在2.2V、1MHz主频的活动模式时工作电流为280μA,I/O输入端口的漏电流最大仅50nA。
(2)强大的处理能力
该单片机为16位的精简指令集(RISC)结构,具有丰富的寻址方式(7种源操作数寻址、4种目的操作数寻址)、简洁的27条内核指令以及大量的模拟指令;大量的寄存器以及片内数据存储器都可参加多种运算,还有高效的查表处理方法及较高的处理速度,一个时钟周期可以执行一条指令,使单片机在8MHz晶振工作时,指令速度可达8MIPS。
(3)丰富的片上外围模块
该单片机集成了较丰富的片内外设:模拟比较器A、定时器A、定时器B、串行通信接口USART0和USART1、硬件乘法器、12位ADC、端口1~6、看门狗等。
(4)系统工作稳定
该单片机在上电复位后,首先由DCOCLK启动CPU,保证程序从正确的位置开始执行,同时也保证了晶体振荡器有足够的起振和稳定时间;之后通过软件可设置适当的寄存器的控制位来确定最后的系统时钟频率。在CPU运行中,如果MCLK发生故障,DCO会自动启动,以确保系统正常工作。如果程序跑飞,可以用看门狗将其复位。
(5)方便高效的开发环境
MSP430F149片内有JTAG调试接口,还有可电擦写的FLASH存储器,因此采用先通过JTAG接口下载程序到FLASH内,再由JTAG接口控制程序运行、读取片内CPU状态,以及存储器内容等信息供设计者调试。由于单片机可支持串行在线编程,使开发变得更加简便,并且开发的仿真器价格低廉,不需要昂贵的编程器。
无线数传电路的设计
数据处理与无线数传电路设计主要包括主控制器电路、倾角传感器接口电路、无线数传模块接口电路、电源电路等。基本工作原理是:系统通上电后,主控制器控制倾角传感器按固定间隔检测火箭炮车体姿态,将接收到的检测结果运算处理,计算每个千斤顶的调整量,再通过无线数传模块发送给操纵指示器。
(1)主控制器及接口电路设计
主控器采用MSP430F149单片机,串口1经TTL-RS232电平转换接倾角传感器,用于接收传感器输出数据,串口2 TTL电平接无线数传模块,发送车体纵横向倾斜角度和调整角度至操纵指示器。主控制器及接口电路如图3所示。
图3 主控器及接口电路图
(2)电源电路设计
电源采用12V/1000mAh的锂电池,直接为倾角传感器供电,再经两路DC-DC转换,分别转换至9V和3.3V,9V电源为无线数传模块供电,3.3V为主控制器及接口电路供电,充电电路采用LM317芯片,恒流方式充电。电源电路见图4所示。
(3)无线数传模块的选用
在一些多测试点的系统中,伴随传感器而来的是大量数据线缆。众多的线缆不仅带来布线的复杂不便,而且存在着短路、短线隐患,成本高,易老化,还给系统的调试和维护增加了难度。另外,在一些特殊的应用场合,需要将传感器放置在有危险的封闭环境中进行工作,试图通过连线的方法得到传感器的信号显然是有一定难度的。而采用无线方式来实现信号的传送,可以解决这一问题。相比有线传输,无线传输具有不占据空间、没有布线要求、成本低、可靠性高、维护方便及传输中的干扰较少等优点,这也在一定程度上提高了传输的可靠性。
图4 电源电路图
根据实际情况,本文采用ZT-TR43F无线数传模块,它是一款无线收发一体的低功耗通信模块。该模块的技术指标如下:①载波频率为433MHz,工作频率为428MHz~435MHz;②最大发射功率5mW,接收灵敏度﹣105dBm;③采用FSK调制,采用前向信道纠错编码,抗干扰能力强;④有八个工作信道可供选择;⑤传输速率9.6kbps;⑥降低噪声放大器LNA、功率放大器PA、压空振荡器VCO等大部分功能集成在芯片内,外围电路简单易于开发。采用该无线数传模块,可以使车体调平装置满足某型火箭炮调平时的无线数传要求:①适当的通信距离,一般以不超过30m为宜,通信功率过大使通信距离过远,会造成炮与炮之间相互干扰;②较强的抗干扰能力,系统在较强的外界干扰中也能正常工作;③较低的功耗,该装置野外应用,无固定供电电源,只能靠电池维持系统运行。
无线模块ZT-TR43F与单片机接口提供了RS232/TTL/RS485三种接口方式,本系统采用TTL接口方式,方便与MSP430F149单片机的接口。其中MSP430单片机的RXD、TXD口分别与无线模块的TXD、RXD口相接,地线与地线相接。
考虑到多门火箭炮同时调平时,有多个调平装置同时工作,为防止之间相互干扰,采取不同的通信信道或不同编码方式识别,每个装置上带有拨码盘,通过拨码盘设置各自的通信信道或识别码。
调整角度的计算
主控制器接收到车体的纵横向倾斜角度后,需要计算每个千斤顶相对调整的角度,角度计算的几何关系见图5。
图5 角度计算关系图
如图5所示,车体水平倾斜角度可反映在横向和纵向两个方向,图5中a和b分别为横向和纵向倾斜角度,设α和β为倾角传感器得出的横向和纵向角度。若α大于0,则A端千斤顶打高,B端千斤顶打低。两端千斤顶各位移约为α/2乘以AB端点间隔的一半的距离,然后调整千斤顶直到横向水准气泡居中。若β大于0,则A端和B端同时打低,若β小于0,则A端和B端同时打高。打高过程中调整千斤顶直到纵向水准气泡居中。
评论
查看更多