完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
电子发烧友网技术文库为您提供最新技术文章,最实用的电子技术文章,是您了解电子技术动态的最佳平台。
并非每一个问题都可以通过机器学习来解决,也并不是每个企业都为AI的应用做好了准备。比如,企业要确定具体的应用场景、是否有足够的数据进行分析、要建立预测模型、要有定义模型和训练模型的人员和工具......等等。为此,本文将具体阐述使用人工智能、深度学习和机器学习时,企业需要做的10项准备工作。...
一种实现深度学习的方法是使用卷积神经网络(CNN)。CNN是模拟人类视觉感知建模的。人类用自身的神经元网络处理图像;CNN通过输入层节点(node)来处理图像。人们通过向网络送入预处理的图像来训练CNN。通过学习这些输入,算法会不断调整各节点的权重并因此学会识别模式和相关点。由于算法不断修正这些权重...
在医学成像领域,疾病的准确诊断或评估取决于图像采集和图像解译。近年来,随着技术的发展,设备能以更快地速率和更强大的分辨率来收集数据,这大大提高了图像采集的质量。然而,计算机技术对图像解译的改进,才刚刚开始。目前,大部分的医学图像解译都由医生来进行。...
Caffe框架主要有五个组件,Blob,Solver,Net,Layer,Proto,其结构图如下图1所示。Solver负责深度网络的训练,每个Solver中包含一个训练网络对象和一个测试网络对象。每个网络则由若干个Layer构成。每个Layer的输入和输出Feature map表示为Input B...
神经网络是最近很流行的科技热词,其核心用途是分类。分类器是自动对输入值进行分类的机器。分类器输入的是一个数值向量,叫做特征(向量)。分类器的输出也是数值,代表分类的结果。分类器的目标就是让正确分类的比例尽可能高。而生成对抗网络(GAN)由一个生成网络与一个判别网络组成,通过让两个神经网络相互博弈的方...
据连线杂志网站报道,在澳大利亚的西海岸,生物学家阿曼达·霍奇森(Amanda Hodgson)控制无人机飞向印度洋上的高空。这位儒艮专家使用无人机帮助他们观察濒临灭绝的研究对象。...
Data Science Central网站主编、有多年数据科学和商业分析模型从业经验的Bill Vorhies曾撰文指出,过去一年人工智能和深度学习最重要的发展不在技术,而是商业模式的转变——所有巨头纷纷将其深度学习IP开源。...
在人脸分割的应用中,美妆是一个受众较广的问题。给出一张素颜正面照,如果能够给出其最适合的化妆风格并将其渲染到这张素颜脸上,可以让女孩子们更方便地找到适合的风格。中科院信工所刘博士等人的论文所解决的问题就是完成一个功能更完善的人脸自动美妆应用,不仅能够给素颜的图片上妆,而且可以为用户推荐最适合的妆容,...
在机器学习(Machine learning)领域。主要有三类不同的学习方法:监督学习(Supervised learning)、非监督学习(Unsupervised learning)、半监督学习(Semi-supervised learning)。...
天赐予人类惊人的学习能力。我们从出生开始就学习复杂的任务,如语言和图像识别,之后在一生中以这种第一学习体验为基础不断进行修正。之后,似乎自然而言的是,我们利用这种学习概念来积累知识,并能够建立模型和预测结果,甚至将这种概念应用于与计算机相关的程序和任务中。而这些涉及于上述计算过程中的技术,就是所谓的...
为了补充Udacity公司之前的人工智能课程,在线教育创业公司与YouTube上的明星Siraj Raval展开了合作,向共同授课的Udacity公司的Mat Leonard提供了一个新的深度学习纳米级基础课程。 ...
在这篇文章中,我想向大家介绍推动深度学习发展的5个主力框架。这些框架使数据科学家和工程师更容易为复杂问题构建深度学习解决方案,并执行更复杂的任务。这只是众多开源框架中的一小部分,由不同的科技巨头支持,并相互推动更快创新。...
其实语音识别已经存在很多年了,那为什么现在才成为主流呢?因为深度识别终于将语音识别在非受控环境下的准确度提高到了一个足以投入实用的高度。吴恩达教授曾经预言过,当语音识别的准确度从95%提升到99%的时候,它将成为与电脑交互的首要方式。...
由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。 ...
分发过程走的是互联网线路(专线太贵),互联网线路的稳定性不可预期,有时网络抖动,会造成分发失败,甚至挖断光缆导致某条干网不可用的事故也经常出现,某条线路或者某个机房的问题,可能会造成区域性的不可用。...
人工智能(下称AI)是具有智能行为模仿能力的机器,它是在电脑中,模拟人类的行为和认知程序,自然地学习所有知识的智能大脑。它正在越来越多地取代人类的活动,同时也给人类带来危险,对此,AI所产生的现代性问题是:要将这些越发智能的AI实体和其他法律主体一样纳入法律社会控制体系中来吗?...
机器人的研发是为了协助或取代人类进行危险的工作,目前大部分的机器人都还是硬邦邦的“硬汉”形象。人们也在拓展自己的想象和创造力,去开发像“大白”一样软萌的机器人。这种利用柔软材料来制作的机器人,被称为软体机器人,在研究领域颇受关注。...
在Facebook人工智能实验室负责人杨乐昆(Yann LeCun)看来,人类既然已经教会机器辨别图片,甚至能做到人脸识别,那么机器也能识别视频。而教会机器学习视频的方法与婴儿学习相似。即让机器像婴儿一样,观看视频,告诉它视频所讲的内容。...