完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
电子发烧友网技术文库为您提供最新技术文章,最实用的电子技术文章,是您了解电子技术动态的最佳平台。
简化和优化生成式 AI 开发的工具备受追捧,需求与日俱增。借助基于检索增强生成(RAG)(该技术通过从指定外部来源获取事实资料,来提高生成式 AI 模型的准确性和可靠性)的应用和自定义模型,开发者能够根据其具体需求调整 AI 模型。 此类工作在过去可能需要复杂的设置,而新工具使这项工作变得空前简单。...
大家平时经常听到的GRU是什么呢? 首先来认识下CNN,CNN指代卷积神经网络(Convolutional Neural Network),这是一种在人工智能和机器学习领域中常用的神经网络架构,特别适用于处理图像识别和计算机视觉任务。今天要给大家介绍一位新朋友,名为GRU。 Gated Recurr...
SmartNIC智能网卡/DPU数据处理引擎的下一跳ConnectX-8/BlueField-4目标速率为 800G,与1.6T Quantum和Spectrum-X配套的SmartNIC和DPU的路标仍不明晰,NVLink5.0和NVSwitch4.0可能提前发力。...
受逻辑符号领域的逻辑推理方法的启发,我们引入了一个在一阶逻辑下完备的逻辑推理范式归结反演(其推理过程不会受到条件1的约束)来提高完备性,并提出一个新的推理框架GFaiR。...
为了解决这个问题,这篇研究提出了一种指令层次结构(instruction hierarchy)。它明确定义了不同指令的优先级,以及当不同优先级的指令发生冲突时,LLM应该如何表现。...
机器学习可视化(简称ML可视化)一般是指通过图形或交互方式表示机器学习模型、数据及其关系的过程。目标是使理解模型的复杂算法和数据模式更容易,使技术和非技术利益相关者更容易理解它。...
同时根据测试精度,可以看出,通过添加第一次训练多得到的支持向量,而非将全体数据进行二次训练,能够达到同样的效果。...
最大的区别ChatGPT是通过对话数据进行预训练,而不仅仅是通过单一的句子进行预训练,这使得ChatGPT能够更好地理解对话的上下文,并进行连贯的回复。...
如今,机器学习的应用广泛,包括人脸识别、医疗诊断等,为复杂问题和大量数据提供解决方案。机器学习算法能基于数据产生成功的分类模型,但每个数据都有其问题,需定义区别特征进行正确分类。...
图像预处理通常包括直方图均衡化、滤波去噪、灰度二值化、再次滤波几部分,以得到前后景分离的简单化图像信息;随后利用数学形态学、傅里叶变换、Gabor 变换等算法以及机器学习模型完成缺陷的标记与检测。...
随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度学习技术,使得深度学习SLAM系统获得了迅速发展,并且比传统算法展现出更高的精度和更强的环境适应性。...
算法历程:线性回归是一种古老的统计方法,它试图找到最佳拟合数据的直线或超平面,最早可以追溯到19世纪初的高斯最小二乘法理论。...
除了轻量级架构设计外,作者提到了可以应用于压缩给定架构的各种高效算法。例如,量化方法 旨在减少数据所需的存储空间,通常是通过用8位或16位数字代替32位浮点数,甚至使用二进制值表示数据。...
循环神经网络(RNN):用于序列数据建模和自然语言处理任务的常用模型,传统神经网络的结构比较简单,通常为:输入层 – 隐藏层 – 输出层。...
张量是一个多维数组,可以看作是向量和矩阵的更底层的表示,向量和矩阵是张量的特例。例如向量是一维的张量,矩阵是二维的张量。张量可以有任意数量的维度,而不仅仅是一维(向量)或二维(矩阵)。...
当摄像头和人工智能结合起来捕捉图像和数据时,它们可以彻底改变机器与世界的交互方式 感知型人工智能让机器人可以通过视觉能力感知周围环境中发生的一切,并做出重要决策,确保其运行速度不会减慢,其中包括做出对其角色来说至关重要的实时决策。...
除了Ethos-U85之外,Arm还推出了全新的物联网参考设计平台Corstone-320。该平台将Arm最高性能的Cortex-M85 CPU、Mali-C55图像信号处理器和Ethos-U85 NPU结合在一起,为语音、音频和视觉等边缘AI应用提供了所需的性能支持。...
这种理解导致了卷积神经网络。网络的第一层由扫描图像的小块神经元组成 - 一次处理几个像素。通常这些是9或16或25像素的正方形。...