nRF24L01的接收程序:
#include 《reg51.h》
#define uchar unsigned char
#define uint unsigned int
sbit CE = P0^0; // Chip Enable pin signal (output)
sbit CSN = P0^1; // Slave Select pin, (output to CSN, nRF24L01)
sbit IRQ = P0^5; // Interrupt signal, from nRF24L01 (input)
sbit MISO = P0^4; // Master In, Slave Out pin (input)
sbit MOSI = P0^3; // Serial Clock pin, (output)
sbit SCK = P0^2; // Master Out, Slave In pin (output)
// SPI(nRF24L01) commands
#define READ_REG 0x00 // Define read command to register
#define WRITE_REG 0x20 // Define write command to register
#define RD_RX_PLOAD 0x61 // Define RX payload register address
#define WR_TX_PLOAD 0xA0 // Define TX payload register address
#define FLUSH_TX 0xE1 // Define flush TX register command
#define FLUSH_RX 0xE2 // Define flush RX register command
#define REUSE_TX_PL 0xE3 // Define reuse TX payload register command
#define NOP 0xFF // Define No Operation, might be used to read status register
// SPI(nRF24L01) registers(addresses)
#define CONFIG 0x00 // ‘Config’ register address
#define EN_AA 0x01 // ‘Enable Auto Acknowledgment’ register address
#define EN_RXADDR 0x02 // ‘Enabled RX addresses’ register address
#define SETUP_AW 0x03 // ‘Setup address width’ register address
#define SETUP_RETR 0x04 // ‘Setup Auto. Retrans’ register address
#define RF_CH 0x05 // ‘RF channel’ register address
#define RF_SETUP 0x06 // ‘RF setup’ register address
#define STATUS 0x07 // ‘Status’ register address
#define OBSERVE_TX 0x08 // ‘Observe TX’ register address
#define CD 0x09 // ‘Carrier Detect’ register address
#define RX_ADDR_P0 0x0A // ‘RX address pipe0’ register address
#define RX_ADDR_P1 0x0B // ‘RX address pipe1’ register address
#define RX_ADDR_P2 0x0C // ‘RX address pipe2’ register address
#define RX_ADDR_P3 0x0D // ‘RX address pipe3’ register address
#define RX_ADDR_P4 0x0E // ‘RX address pipe4’ register address
#define RX_ADDR_P5 0x0F // ‘RX address pipe5’ register address
#define TX_ADDR 0x10 // ‘TX address’ register address
#define RX_PW_P0 0x11 // ‘RX payload width, pipe0’ register address
#define RX_PW_P1 0x12 // ‘RX payload width, pipe1’ register address
#define RX_PW_P2 0x13 // ‘RX payload width, pipe2’ register address
#define RX_PW_P3 0x14 // ‘RX payload width, pipe3’ register address
#define RX_PW_P4 0x15 // ‘RX payload width, pipe4’ register address
#define RX_PW_P5 0x16 // ‘RX payload width, pipe5’ register address
#define FIFO_STATUS 0x17 // ‘FIFO Status Register’ register address
#define TX_ADR_WIDTH 5 // 5字节宽度的发送/接收地址
#define TX_PLOAD_WIDTH 4 // 数据通道有效数据宽度 因为这个4,导致发送接收的数据缺少第五个!改成5则正常!
#define LED P1
uchar code TX_ADDRESS[TX_ADR_WIDTH] = {0x34,0x43,0x10,0x10,0x01}; // 定义一个静态发送地址
uchar RX_BUF[TX_PLOAD_WIDTH];
uchar TX_BUF[TX_PLOAD_WIDTH];
uchar flag;
uchar DATA = 0x01;
uchar bdata sta;
sbit RX_DR = sta^6;
sbit TX_DS = sta^5;
sbit MAX_RT = sta^4;
void init_io(void)
{
CE = 0; // 待机
CSN = 1; // SPI禁止
SCK = 0; // SPI时钟置低
IRQ = 1; // 中断复位
LED = 0xff; // 关闭指示灯
}
void delay_ms(uchar x)
{
uchar i, j;
i = 0;
for(i=0; i《x; i++)
{
j = 250;
while(--j);
j = 250;
while(--j);
}
}
uchar SPI_RW(uchar byte)
{
uchar i;
for(i=0; i《8; i++) // 循环8次
{
MOSI = (byte & 0x80); // byte最高位输出到MOSI
byte 《《= 1; // 低一位移位到最高位
SCK = 1; // 拉高SCK,nRF24L01从MOSI读入1位数据,同时从MISO输出1位数据
byte |= MISO; // 读MISO到byte最低位
SCK = 0; // SCK置低
}
return(byte); // 返回读出的一字节
}
uchar SPI_RW_Reg(uchar reg, uchar value)
{
uchar status;
CSN = 0; // CSN置低,开始传输数据
status = SPI_RW(reg); // 选择寄存器,同时返回状态字
SPI_RW(value); // 然后写数据到该寄存器
CSN = 1; // CSN拉高,结束数据传输
return(status); // 返回状态寄存器
}
uchar SPI_Read(uchar reg)
{
uchar reg_val;
CSN = 0; // CSN置低,开始传输数据
SPI_RW(reg); // 选择寄存器
reg_val = SPI_RW(0); // 然后从该寄存器读数据
CSN = 1; // CSN拉高,结束数据传输
return(reg_val); // 返回寄存器数据
}
uchar SPI_Read_Buf(uchar reg, uchar * pBuf, uchar bytes)
{
uchar status, i;
CSN = 0; // CSN置低,开始传输数据
status = SPI_RW(reg); // 选择寄存器,同时返回状态字
for(i=0; i《bytes; i++)
pBuf = SPI_RW(0); // 逐个字节从nRF24L01读出
CSN = 1; // CSN拉高,结束数据传输
return(status); // 返回状态寄存器
}
uchar SPI_Write_Buf(uchar reg, uchar * pBuf, uchar bytes)
{
uchar status, i;
CSN = 0; // CSN置低,开始传输数据
status = SPI_RW(reg); // 选择寄存器,同时返回状态字
for(i=0; i《bytes; i++)
SPI_RW(pBuf); // 逐个字节写入nRF24L01
CSN = 1; // CSN拉高,结束数据传输
return(status); // 返回状态寄存器
}
评论
查看更多