1.2.1 数列极限的概念
设{}是一个数列,a是实数,如果对于任意给定的,总存在一个正整数N,当n>N时都有,我们就称a是数列{}的极限,或者称数列{}收敛,且收敛于a,记为,a即为的极限。
数列极限的几何解释:以a为极限就是对任意给定的开区间,第N项以后的一切数全部落在这个区间内。
1.2.2 函数极限的概念
设函数f(x)在点附近(但可能除掉点本身)有定义,设A为一个定数,如果对任意各定,一定存在,使得当时,总有,我们就称A是函数f(x)在点的极限,记作,这时称f(x)在点极限存在,这里我们不要求f(x)在点有定义,所以才有。
例如:,当x=1时,函数是没有定义的,但在x=1点函数的极限存在,显然等于2。
1.2.3 单调有界数列必有极限
单调有界数列必有极限,是判断极限存在的重要准则之一,具体叙述如下:
如果数列满足条件
,
就称数列是单调增加的;反之则称为是单调减少的。
在前面的章节中曾证明:收敛的数列必有界。但也曾指出:有界的数列不一定收敛。现在这个准则表明:如果数列不仅有界,而且是单调的,则其极限必定存在。
对这一准则的直观说明是,对应与单调数列的点只可能向一个方向移动,所以只有两种可能情形:或者无限趋近某一定点;或者沿数轴移向无穷远(因为不趋向于任何定点且递增,已符合趋向无穷的定义)。但现在数列又是有界的,这就意味着移向无穷远已经不可能,所以必有极限。
从这一准则出发,我们得到一个重要的应用。
考虑数列,易证它是单调增加且有界(小于3),故可知这个数列极限存在,通常用字母e来表示它,即 。
可以证明,当x取实数而趋于或时,函数的极限存在且都等于e,这个e是无理数,它的值是 e = 2.718281828459045…
1.2.4 柯西(Cauchy)极限存在准则
我们发现,有时候收敛数列不一定是单调的,因此,单调有界数列必有极限准则只是数列收敛的充分条件,而不是必要的。当然,其中有界这一条件是必要的。下面叙述的柯西极限存在准则,它给出了数列收敛的充分必要条件。
柯西(Cauchy)极限存在准则 数列收敛的充分必要条件是:
对于任意给定的正数,存在着这样的正整数N,使得当m>N,n>N时,就有
。
必要性的证明 设,若任意给定正数,则也是正数,于是由数列极限的定义,存在着正整数N,当n>N时,有;
同样,当m>N时,也有 。
因此,当m>N, n>N时,有
所以条件是必要的。
充分性的证明从略。
这准则的几何意义表示,数列收敛的充分必要条件是:对于任意给定的正数,在数轴上一切具有足够大号码的点,任意两点间的距离小于。
柯西极限存在准则有时也叫做柯西审敛原理。