完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
电子发烧友网技术文库为您提供最新技术文章,最实用的电子技术文章,是您了解电子技术动态的最佳平台。
随着计算能力和大数据的崛起,机器学习算法正迎来快速发展的时期。在研究层面上,机器学习和深度学习是当前最主要的热点。在计算能力的推动下,机器学习算法取得了许多重大突破,如AlphaGo战胜人类棋手,人脸识别跨越百亿级别等等,这些都显示出了机器学习的无限潜能,机器学习的研究已经成为当前人工智能领域的热点...
机器学习(Machine Learning)是一种人工智能的技术,它是一种让计算机通过对大量数据进行分析和学习,从而可以自动进行预测和决策的技术。其核心思想是利用算法和统计学的方法来让计算机在没有人类干预的情况下从数据中“学习”到模式,并使用这些模式来进行自主的决策。机器学习技术已经广泛应用于各个领...
CPU+xPU 的异构方案成为大算力场景标配,GPU为应用最广泛的 AI 芯片。目前业内广泛认同的AI 芯片类型包括GPU、FPGA、NPU 等。由于 CPU 负责对计算机的硬件资源进行控制调配,也要负责操作系统的运行,在现代计算系统中仍是不可或缺的。...
深度神经网络是一种基于神经网络的机器学习算法,其主要特点是由多层神经元构成,可以根据数据自动调整神经元之间的权重,从而实现对大规模数据进行预测和分类。卷积神经网络是深度神经网络的一种,主要应用于图像和视频处理领域。...
卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习神经网络,主要用于图像和视频的识别、分类和预测,是计算机视觉领域中应用最广泛的深度学习算法之一。该网络模型可以自动从原始数据中学习有用的特征,并将其映射到相应的类别。...
人工智能是从一开始就伴随着电子计算机的发明而兴起的。但是直到2012年,深度学习在图像识别上引发突破,机器学习的应用才变得如此普遍。...
数据生态系统正在从独立软件或混合式部署模式过渡到彻底的云原生解决方案。预计到2024年,50%的新系统部署基于集成化的云数据生态系统,而非手动集成的单点解决方案。该机构建议,企业和机构对解决数据分散化问题和访问外部数据并与之集成的能力进行评估,从而考量其数据生态系统。...
计算机视觉中仍有许多具有挑战性的问题需要解决。然而,深度学习方法正在针对某些特定问题取得最新成果。 在最基本的问题上,最有趣的不仅仅是深度学习模型的表现;事实上,单个模型可以从图像中学习意义并执行视觉任务,从而无需使用专门的手工制作方法。...
在机器视觉领域,图像识别是指软件识别人物、场景、物体、动作和图像写入的能力。为了实现图像识别,计算机可以结合人工智能软件和摄像机使用机器视觉技术。...
这项研究开发了一款基于保形(conformal)柔性应变传感器阵列和深度学习神经网络的智能血压和心功能监测系统。该传感器具有高灵敏度、高线性度、快速响应与恢复、高各向同性等多种优点。...
人工智能(Artificial Intelligence,AI)作为一项前沿技术,正以惊人的速度改变着我们的世界。随着深度学习、机器学习和自然语言处理等技术的不断发展,人工智能逐渐成为数字化时代最为引人瞩目的技术领域之一。本文将深入探讨人工智能技术架构的核心原理和应用,展示它在突破人类智慧边界方面的...
架构配置文件则对存算一体架构的各项参数进行配置,使模拟器能够仿真不同的存算一体架构。核心设计是PIMSIM-NN的重点,主要有4个处理单元,分别是矩阵单元、向量单元、传输单元和标量单元。...
我们想要“训练”的是某些函数f:x↦y ,或者说是更普遍地估计条件分布P(y∣x)。我们的候选函数来自于参数集F={fθ∣θ∈Θ},在这里θ 代表参数。 为了达成目标,我们设定了损失函数(或风险函数),从概念上讲,我们希望将预期损失...
CUDA之所以会成为算力芯片硬件厂商必须要认真考虑的一个选择,最直接的原因,是其已经实现了与算法客户的强绑定。众多算法工程师已经习惯了CUDA提供的工具库及其编程语言,向外迁移总是会存在不习惯的问题。...