完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
电子发烧友网技术文库为您提供最新技术文章,最实用的电子技术文章,是您了解电子技术动态的最佳平台。
目前光芯片与光器件国产化程度较低,国内产品多为无源器件、低 速率光芯片,根据 ICC 预测,2021 年我国 25G 光芯片国产化率约 20%,25G 以 上光芯片国产化率仅 5%。...
在当今快速发展的技术环境中,人工智能 (AI) 正在全面改变行业,软件开发也不例外。AI 可以通过简化流程、自动执行重复性任务以及使开发人员能够构建创新应用程序来显著增强开发人员体验。...
强化学习(RL)是人工智能的一个子领域,专注于决策过程。与其他形式的机器学习相比,强化学习模型通过与环境交互并以奖励或惩罚的形式接收反馈来学习。...
矢量数据库目前在科技界风靡一时,而不仅仅是炒作。由于利用矢量嵌入的人工智能进步,矢量搜索变得越来越重要。这些向量嵌入是单词嵌入、句子或文档的向量表示,只需查看向量之间的距离度量,即可为语义接近的输入提供语义相似性。...
Customer 360 是跨多个接触点了解和管理客户数据的综合方法。组织必须全面了解客户的交互、偏好和需求,以便提供个性化的体验和服务。集成 GPT API 等 AI 驱动的语言模型可以显著增强 Customer 360 系统的功能,通过自然语言处理、文本生成和数据分析增加价值。本文深入探讨了将 ...
生成式 AI 正在通过自动化任务、增强协作和加速创新来改变软件开发。这项尖端技术有望增强各种软件角色,为共同创新创造不同的视角和机会。在本文中,我将深入研究生成式AI在软件开发中的未来,讨论道德考虑,并总结对行业的潜在影响。...
本系列文章的第一部分讨论的CIFAR网络由不同层的神经元组成。如图1所示,32 × 32像素的图像数据被呈现给网络并通过网络层传递。CNN处理过程的第一步就是提取待区分对象的特性和结构,这需要借助滤波器矩阵实现。设计人员对CIFAR网络进行建模后,由于最初无法确定这些滤波器矩阵,因此这个阶段的网络无...
随着人工智能(AI)技术的快速发展,AI可以越来越多地支持以前无法实现或者难以实现的应用。本系列文章基于此解释了卷积神经网络(CNN)及其对人工智能和机器学习的意义。CNN是一种能够从复杂数据中提取特征的强大工具,例如识别音频信号或图像信号中的复杂模式就是其应用之一。...
AI应用通常需要消耗大量能源,并以服务器农场或昂贵的现场可编程门阵列(FPGA)为载体。AI应用的挑战在于提高计算能力的同时保持较低的功耗和成本。当前,强大的智能边缘计算正在使AI应用发生巨大转变。与传统的基于固件的AI计算相比,以基于硬件的卷积神经网络加速器为载体的智能边缘AI计算具备惊人的速度和...
RES在图形编辑、视频制作、人机交互和机器人等众多应用领域具有巨大潜力。目前,大多数现有方法都遵循在知名数据集ReferIt和RefCOCO中定义的RES规则,并在近年来取得了巨大进展。...
2022年12月,OpenAI发布基于GPT-3.5的聊天机器人模型ChatGPT,参数量达到1750亿个。ChatGPT引领全球人工智能浪潮,人工智能发展需要AI芯片作为算力支撑。...
传统的语音到文本的翻译是通过语音识别和文本机器翻译的串联实现。这个方法的缺点是推理过程中的错误会累加。ConST 可以直接将英语的语音翻译成中文的文本,而且在语音到文本的翻译中,达到了 SOTA(state of the art)的效果[2]。...
一般情况下,我们需要先指定一个k,当一个新的数据集来临时,我们首先计算这个新的数据跟训练集中的每一个数据的距离,一般使用欧氏距离。...
拍摄噪声 (shot noise) 一般是泊松分布,它与接受的光信号的强度有关,发生在光子信号读取之后激发电信号的过程中。...
与宁德时代传统的电池缺陷检测方法相比,基于 AI 技术的新方案有更好的速度与更高的精度,达到了预先设定的目标——零漏检及单工序 400FPS 以上的图像处理速度。...
PEFT 技术旨在通过最小化微调参数的数量和计算复杂度,来提高预训练模型在新任务上的性能,从而缓解大型预训练模型的训练成本。这样一来,即使计算资源受限,也可以利用预训练模型的知识来迅速适应新任务,实现高效的迁移学习。因此,PEFT 技术可以在提高模型效果的同时,大大缩短模型训练时间和计算成本,让更多...
该团队提出的光学卷积处理单元实验验证了手写数字图像特征提取和分类能力。结果表明,图像特征提取精度达到5 bit;对来自MNIST手写数字数据库的手写数字进行十分类,准确率达92.17%。...
一些研究人员便立马想到可以使用全卷积神经网络(Fully convolutional Network)来实现这个过程,全卷积神经网络(Fully convolutional Network)是我们之前在2D计算机视觉当中所采用的用于图像分割的神经网络。...
前向梯度学习通常用于计算含有噪声的方向梯度,是一种符合生物学机制、可替代反向传播的深度神经网络学习方法。然而,当要学习的参数量很大时,标准的前向梯度算法会出现较大的方差。...
深度学习的意思其实不是不变的,它的本意是动态发展的。最初的深度学习基本意思是聚焦于区别于误差反向传递算法(Backpropogation)那种打包式的黑箱(black-box)学习方法。...