完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
电子发烧友网技术文库为您提供最新技术文章,最实用的电子技术文章,是您了解电子技术动态的最佳平台。
Transformer模型在强化学习领域的应用主要是应用于策略学习和值函数近似。强化学习是指让机器在与环境互动的过程中,通过试错来学习最优的行为策略。...
2023年迎来“知识生产力变革”第一浪,以大语言模型为核心,实现知识工程的生产力变革,类似于中世纪的印刷革命。大语言模型具有超高速学习能力,可在人机协同模式下显著提高知识学习、搜索、传播速度和准确性。...
LangChain通过Loader加载外部的文档,转化为标准的Document类型。Document类型主要包含两个属性:page_content 包含该文档的内容。meta_data 为文档相关的描述性数据,类似文档所在的路径等。...
还有一个与批次大小有关的数量,它们在一个有趣的点上相交。这个点不取决于硬件之外的任何因素。举例来说,在 A10G 和 A100 上,硬件可以实现的总浮点运算次数的两倍除以内存带宽为 400。...
偏置(bias)是什么?这很好理解,偏置是当前模型的平均预测结果与我们需要预测的实际结果之间的差异。当模型的偏置较高时,说明其不够关注训练数据。...
因为大部分人使用的模型都是预训练模型,使用的权重都是在大型数据集上训练好的模型,当然不需要自己去初始化权重了。只有没有预训练模型的领域会自己初始化权重,或者在模型中去初始化神经网络最后那几个全连接层的权重。...
借助对比学习和元学习的方法。增加对比学习的loss,对比学习通过增强模型区分能力,来增强RM的对好坏的区分水平。元学习则使奖励模型能够维持区分分布外样本的细微差异,这种方法可以用于迭代式的RLHF优化。...
TurboTransformers算是比较早期指出输入变长需要新的Batching方法的论文。在2020年上半年,我开始思考如何把变长输入Batching方法扩展到Decoder架构中。...
“操作系统管理着计算机的资源和进程,以及所有的硬件和软件。计算机的操作系统让用户在不需要了解计算机语言的情况下与计算机进行交互。”这是我们对计算机系统的最初理解。...
AI可以被用来进行自动化网络攻击,这种攻击更加隐蔽、快速和难以防御。例如,AI可以快速识别和利用软件漏洞,或者通过机器学习来提升钓鱼攻击的成功率。...
数据基础设施是从数据要素价值释放的角度出发,在网络、算力等设施的支持下,面向社会提供一体化数据汇聚、处理、流通、应用、运营、安全保障服务的一类新型基础设施,是覆盖硬件、软件、开源协议、标准规范、机制设计等在内的有机整体。...
重要的是如何计算输出矩阵中的每个单独元素,这可以归结为两个非常大的向量的点积 - 在上面的示例中,大小为 12288。这由 12288 次乘法和 12277 次加法组成,它们累积成一个数字– 输出矩阵的单个元素。...
David Bourgin 表示他一直在慢慢写或收集不同模型与模块的纯 NumPy 实现,它们跑起来可能没那么快,但是模型的具体过程一定足够直观。每当我们想了解模型 API 背后的实现,却又不想看复杂的框架代码,那么它可以作为快速的参考。...
长期来看,国产CPU、GPU、AI芯片厂商受益于庞大的国内市场,叠加国内信创市场带来国产化需求增量,我们预期国内AI芯片的国产化比例将显著提升,借此机会进行产品升级,逐渐达到国际先进水平,突破封锁。...
当下智算时代虽然在初级阶段,依托AI大模型形成的新一代算力基础设施和AI应用已经在诸多领域崭露头角。 数字中国愿景的实现,基石在于夯实数字化基础设施建设。...
微软在全球拥有超过10.5万名安全和威胁情报专家,为政府提供关于网络安全的宝贵见解。该公司每天合成64万亿个信号,使用复杂的数据分析,并拥有人工智能算法来抵御网络威胁。...
大模型的参数量主要取决于隐藏层的维度和构成模型的Block的数量,我们假定隐藏层的维度为 h,Block 的数量为 i,那么,大模型的参数量为 。...
AI赛道投资火热,基建与应用两端爆发 当前中国资本市场对于AI领域的主要关注在两端:前端基础设施部署及后端应用开发;AI相关应用开发正由虚转实,落地实体经济的场景应用结合AI原生应用的组合布局初见端倪。...
许多早期的机器学习算法需要人工标记训练示例。例如,训练数据可能是带有人工标签("狗"或"猫")的狗或猫的照片。人们需要标记数据的需求使得创建足够大的数据集来训练强大的模型变得困难且昂贵。...