完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
电子发烧友网技术文库为您提供最新技术文章,最实用的电子技术文章,是您了解电子技术动态的最佳平台。
我们可以选择在整个人口中随机抽取一个 60 大小的样本,但在这些城镇中,随机样本可能不太平衡,因此会产生偏差,导致估计误差很大。 相反,如果我们选择从 A、B 和 C 镇分别抽取 10、20 和 30 个随机样本,那么我们可以在总样本大小相同的情况下,产生较小的估计误差。...
vLLM是一个开源的大模型推理加速框架,通过PagedAttention高效地管理attention中缓存的张量,实现了比HuggingFace Transformers高14-24倍的吞吐量。...
人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。...
深度学习在图像语义分割上已经取得了重大进展与明显的效果,产生了很多专注于图像语义分割的模型与基准数据集,这些基准数据集提供了一套统一的批判模型的标准,多数时候我们评价一个模型的性能会从执行时间、内存使用率、算法精度等方面进行考虑。...
三星首席工程师Jin Hyun Kim表示:“大部分能源消耗来自移动数据。” 他指出了三种提高效率和提升绩效的解决方案:使用HBM进行内存处理,实现极高的带宽和功耗;使用LPDDR对需要高容量的低功耗设备进行内存处理;使用CXL进行近内存处理,以适中的成本实现极高的容量。...
深度学习作为机器学习的一个分支,其学习方法可以分为监督学习和无监督学习。两种方法都具有其独特的学习模型:多层感知机 、卷积神经网络等属于监 督学习;深度置信网 、自动编码器 、去噪自动编码器 、稀疏编码等属于无监督学习。...
据知情人士透露,至少从去年开始,该公司就讨论了各种方案,以解决OpenAI所依赖的昂贵AI芯片短缺的问题。这些选择包括制造自己的人工智能芯片,与包括英伟达(Nvidia)在内的其他芯片制造商更密切地合作,以及在英伟达之外实现供应商多元化。...
人工智能(AI)和机器学习(ML)在现代科技领域中的广泛应用,特别关注了它们在传感器、边缘设备、边缘计算、数据中心和云端的角色,在这些不同领域中,Net-on-chip(NoC)技术的关键作用。...
为了弥补性能上的不足,领先的半导体公司使用大量最好的硬件处理器构建系统。为此,他们在功耗、带宽/延迟和成本之间进行了权衡。这种方法适用于算法训练,但不适用于部署在边缘设备上的推理。...
目前最新的第四代至强 可扩展处理器的单颗CPU核数已经增长到最高60核。而在数据访问速度上,各级缓存大小、内存通道数、内存访问速度等都有一定程度的优化,另外在CPU Max系列中还集成了HBM高带宽内存技术。...
为了减少沉重的计算负担,各种方法,包括有效的模块设计,知识蒸馏,神经架构搜索和结构重新参数化等都试图提高SR算法的效率。在这些有效的SR模型中,主要有两个优化方向。...
FPGA是一种半定制芯片,对芯片硬件层可以灵活编译。但是缺点也比较明显,当处理的任务重复性不强、逻辑较为复杂时,FPGA效率就会比较差。...
机器学习是一个快速发展的领域,常用的包更新非常频繁。尽管开发人员做出了努力,但较新的版本通常与旧版本不兼容,这样给研究者带来很多麻烦。幸运的是,有工具可以解决这个问题!在这一方面,Mikhailiuk 推荐了两个工具:Docker 和 Conda。...
值得指出的是,即使在第一步,也有很多可能的 “下一个词” 可供选择(温度为 0.8),尽管它们的概率下降得很快(是的,这个对数图上的直线对应于 n-1 的 “幂律” 衰减,这是语言的一般统计的特点)。...
随着ChatGPT的火爆出圈,GenAI成为各行各业关注和热议的话题。全球科技巨头和AI厂商纷纷下场,唯恐错过此番科技盛宴。行业翘楚和媒体将GenAI浪潮类比昔日的移动互联网机遇,认为它将对全球经济和各个行业带来深远影响,企业也将迎来重大变革机遇。...
ARM架构服务器已逐步成为通用计算领域新的选择。 国内ARM生态发展迅速,以鲲鹏为代表的ARM架构服务器,市场份额快速提升,预计2023年全年中国服务器市场ARM占比会超过10%。...
实例分割问题,主要障碍在于点云本身是无序、非结构化和非均匀的。广泛使用的卷积神经网络需要对三维点云进行体素化处理,从而产生高昂的计算和内存成本。...
多感觉整合的另一个主要特点是,多感觉增强通常与被整合的单个线索的强度成反比。这被称为反效果效应,具有直观意义,因为高度突出的单模态刺激会在相应的单感觉神经元中唤起强烈的反应,这种反应很容易被检测到。...
零样本分类的技术目前正处于高速发展时期, 所涉及的具体应用已经从最初的图像分类任务扩展到了其他计算机视觉任务乃至自然语言处理等多个相关领域。 对此, 本文将其称为广义零样本分类。 相应地, 我们将针对图像分类任务的零样本分类任务称为狭义零样本分类。...